Research

Search

clinical trial designs

1. Amendola BE, Mahadevan A, Blanco Suarez JM, Griffin RJ, Wu X, Perez NC, Hippe DS, Simone CB 2nd, Mohiuddin M, Mohiuddin M, Snider JW, Zhang H, Le QT, Mayr NA. (2022 Aug 31). An International Consensus on the Design of Prospective Clinical-Translational Trials in Spatially Fractionated Radiation Therapy for Advanced Gynecologic Cancer. Cancers (Basel), 14;(17):. doi: 10.3390/cancers14174267


2. Mayr NA, Snider JW, Regine WF, Mohiuddin M, Hippe DS, Peñagarícano J, Mohiuddin M, Kudrimoti MR, Zhang H, Limoli CL, Le QT, Simone CB 2nd. (2022 Mar-Apr). An International Consensus on the Design of Prospective Clinical-Translational Trials in Spatially Fractionated Radiation Therapy. Adv Radiat Oncol, 7;(2):100866. doi: 10.1016/j.adro.2021.100866


lattice therapy physics

1. Kunkyab T, Magliari A, Jirasek A, Mou B, Hyde D. (2024 Aug 26). Semi-automated vertex placement for lattice radiotherapy and dosimetric verification using 3D polymer gel dosimetry. J Appl Clin Med Phys, ;():e14489. doi: 10.1002/acm2.14489


2. Mossahebi S, Molitoris JK, Poirier Y, Jatczak J, Zhang B, Mohindra P, Ferris M, Regine WF, Yi B. (2024 Jun 25). Clinical Implementation and Dosimetric Evaluation of a Robust Proton Lattice Planning Strategy Using Primary and Robust Complementary Beams. Int J Radiat Oncol Biol Phys, ;():. pii: S0360-3016(24)00742-9. doi: 10.1016/j.ijrobp.2024.06.009


3. Zhang W, Lin Y, Wang F, Badkul R, Chen RC, Gao H. (2023 Dec). Lattice position optimization for LATTICE therapy. Med Phys, 50;(12):7359-7367. doi: 10.1002/mp.16572


4. Zhang W, Li W, Lin Y, Wang F, Chen RC, Gao H. (2023 Mar 1). TVL1-IMPT: Optimization of Peak-to-Valley Dose Ratio Via Joint Total-Variation and L1 Dose Regularization for Spatially Fractionated Pencil-Beam-Scanning Proton Therapy. Int J Radiat Oncol Biol Phys, 115;(3):768-778. doi: 10.1016/j.ijrobp.2022.09.064


5. Duriseti S, Kavanaugh J, Goddu S, Price A, Knutson N, Reynoso F, Michalski J, Mutic S, Robinson C, Spraker MB. (2021 May-Jun). Spatially fractionated stereotactic body radiation therapy (Lattice) for large tumors. Adv Radiat Oncol, 6;(3):100639. doi: 10.1016/j.adro.2020.100639


6. Murphy NL, Philip R, Wozniak M, Lee BH, Donnelly ED, Zhang H. (2020 Nov). A simple dosimetric approach to spatially fractionated GRID radiation therapy using the multileaf collimator for treatment of breast cancers in the prone position. J Appl Clin Med Phys, 21;(11):105-114. doi: 10.1002/acm2.13040


7. Wu X, Perez NC, Zheng Y, Li X, Jiang L, Amendola BE, Xu B, Mayr NA, Lu JJ, Hatoum GF, Zhang H, Chang SX, Griffin RJ, Guha C. (2020 Dec 1). The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat Res, 194;(6):737-746. doi: 10.1667/RADE-20-00066.1


8. Jin JY, Zhao B, Kaminski JM, Wen N, Huang Y, Vender J, Chetty IJ, Kong FM. (2015 Dec). A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiother Oncol, 117;(3):483-6. doi: 10.1016/j.radonc.2015.07.047


GRID therapy physics

1. Zhang W, Traneus E, Lin Y, Chen RC, Gao H. (2024 Jul 15). A novel treatment planning method via scissor beams for uniform-target-dose proton GRID with peak-valley-dose-ratio optimization. Med Phys, ;():. doi: 10.1002/mp.17307


2. Xu Z, Balik S, Woods K, Shen Z, Cheng C, Cui J, Gallogly H, Chang E, Lukas L, Lim A, Natsuaki Y, Ye J, Ma L, Zhang H. (2024 Aug). Dosimetric characterization for GRID collimator-based spatially fractionated radiation therapy: Dosimetric parameter acquisition and machine interchangeability investigation. J Appl Clin Med Phys, 25;(8):e14410. doi: 10.1002/acm2.14410


3. Das IJ, Khan AU, Dogan SK, Longo M. (2024 May 29). Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol, 97;(1158):1088-1098. doi: 10.1093/bjr/tqae060


4. Karimi AH, Das IJ, Chegeni N, Jabbari I, Jafari F, Geraily G. (2024 Feb 24). Beam quality and the mystery behind the lower percentage depth dose in grid radiation therapy. Sci Rep, 14;(1):4510. doi: 10.1038/s41598-024-55197-0


5. Clements N, Esplen N, Bateman J, Robertson C, Dosanjh M, Korysko P, Farabolini W, Corsini R, Bazalova-Carter M. (2024 Feb 19). Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations. Phys Med Biol, 69;(5):. doi: 10.1088/1361-6560/ad247d


6. Halthore A, Fellows Z, Tran A, Deville C Jr, Wright JL, Meyer J, Li H, Sheikh K. (2023 Winter). Treatment Planning of Bulky Tumors Using Pencil Beam Scanning Proton GRID Therapy. Int J Part Ther, 9;(3):40-49. doi: 10.14338/IJPT-22-00028


7. Ertan F, Yeginer M, Zorlu F. (2023 Feb 1). Dosimetric Performance Evaluation of MLC-based and Cone-based 3D Spatially Fractionated LATTICE Radiotherapy. Radiat Res, 199;(2):161-169. doi: 10.1667/RADE-22-00020.1


8. Clements N, Bazalova-Carter M, Esplen N. (2022 Sep 7). Monte Carlo optimization of a GRID collimator for preclinical megavoltage ultra-high dose rate spatially-fractionated radiation therapy. Phys Med Biol, 67;(18):. doi: 10.1088/1361-6560/ac8c1a


9. Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. (2022 Oct). Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol, 175;():169-177. doi: 10.1016/j.radonc.2022.08.004


10. Pokhrel D, Bernard ME, Mallory R, St Clair W, Kudrimoti M. (2022 May). Conebeam CT-guided 3D MLC-based spatially fractionated radiation therapy for bulky masses. J Appl Clin Med Phys, 23;(5):e13608. doi: 10.1002/acm2.13608


11. Grams MP, Tseung HSWC, Ito S, Zhang Y, Owen D, Park SS, Ahmed SK, Petersen IA, Haddock MG, Harmsen WS, Ma DJ. (2022 Sep-Oct). A Dosimetric Comparison of Lattice, Brass, and Proton Grid Therapy Treatment Plans. Pract Radiat Oncol, 12;(5):e442-e452. doi: 10.1016/j.prro.2022.03.005


12. Zhang X, Griffin RJ, Galhardo EP, Penagaricano J. (2022 Jan-Dec). Feasibility Study of 3D-VMAT-Based GRID Therapy. Technol Cancer Res Treat, 21;():15330338221086420. doi: 10.1177/15330338221086420


13. Zhang H, Grams MP, Foy JJ, Mayr NA. (2022 Feb 18). A Dosimetric Parameter Reference Look-Up Table for GRID Collimator-Based Spatially Fractionated Radiation Therapy. Cancers (Basel), 14;(4):. doi: 10.3390/cancers14041037


14. Smith BR, Nelson NP, Geoghegan TJ, Patwardhan KA, Hill PM, Yu J, Gutiérrez AN, Allen BG, Hyer DE. (2022 Apr). The dosimetric enhancement of GRID profiles using an external collimator in pencil beam scanning proton therapy. Med Phys, 49;(4):2684-2698. doi: 10.1002/mp.15523


15. Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. (2022 Feb 18). An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol, 67;(4):. doi: 10.1088/1361-6560/ac508c


16. Mahmoudi F, Chegeni N, Bagheri A, Fatahi Asl J, Batiar MT. (2021 Aug). Impact of radiobiological models on the calculation of the therapeutic parameters of Grid therapy for breast cancer. Appl Radiat Isot, 174;():109776. doi: 10.1016/j.apradiso.2021.109776


17. Zhang H, Wu X, Zhang X, Chang SX, Megooni A, Donnelly ED, Ahmed MM, Griffin RJ, Welsh JS, Simone CB 2nd, Mayr NA. (2020 Dec 1). Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group. Radiat Res, 194;(6):665-677. doi: 10.1667/RADE-20-00047.1


18. Pokhrel D, Halfman M, Sanford L, Chen Q, Kudrimoti M. (2020 Mar). A novel, yet simple MLC-based 3D-crossfire technique for spatially fractionated GRID therapy treatment of deep-seated bulky tumors. J Appl Clin Med Phys, 21;(3):68-74. doi: 10.1002/acm2.12826


19. Kijima K, Krisanachinda A, Tamura M, Nishimura Y, Monzen H. (2019 Jun). Feasibility of a Tungsten Rubber Grid Collimator for Electron Grid Therapy. Anticancer Res, 39;(6):2799-2804. doi: 10.21873/anticanres.13407


20. Sheikh K, Hrinivich WT, Bell LA, Moore JA, Laub W, Viswanathan AN, Yan Y, McNutt TR, Meyer J. (2019 Jun). Comparison of treatment planning approaches for spatially fractionated irradiation of deep tumors. J Appl Clin Med Phys, 20;(6):125-133. doi: 10.1002/acm2.12617


21. Gao M, Mohiuddin MM, Hartsell WF, Pankuch M. (2018 Apr). Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation. Med Phys, 45;(4):1645-1653. doi: 10.1002/mp.12807


22. Gholami S, Nedaie HA, Longo F, Ay MR, Dini SA, Meigooni AS. (2017 Oct-Dec). Grid Block Design Based on Monte Carlo Simulated Dosimetry, the Linear Quadratic and Hug-Kellerer Radiobiological Models. J Med Phys, 42;(4):213-221. doi: 10.4103/jmp.JMP_38_17


23. Henry T, Bassler N, Ureba A, Tsubouchi T, Valdman A, Siegbahn A. (2017 Nov). Development of an interlaced-crossfiring geometry for proton grid therapy. Acta Oncol, 56;(11):1437-1443. doi: 10.1080/0284186X.2017.1350287


24. Martínez-Rovira I, Puxeu-Vaqué J, Prezado Y. (2017 Oct). Dose evaluation of Grid Therapy using a 6 MV flattening filter-free (FFF) photon beam: A Monte Carlo study. Med Phys, 44;(10):5378-5383. doi: 10.1002/mp.12485


25. Henry T, Ureba A, Valdman A, Siegbahn A. (2017 Dec). Proton Grid Therapy: A Proof-of-Concept Study. Technol Cancer Res Treat, 16;(6):749-757. doi: 10.1177/1533034616681670


26. Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR. (2017 Aug). Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol, 56;(8):1048-1059. doi: 10.1080/0284186X.2017.1299939


27. Narayanasamy G, Zhang X, Meigooni A, Paudel N, Morrill S, Maraboyina S, Peacock L, Penagaricano J. (2017 Aug). Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors. Acta Oncol, 56;(8):1043-1047. doi: 10.1080/0284186X.2017.1299219


28. Tamura M, Monzen H, Kubo K, Hirata M, Nishimura Y. (2017 Feb 7). Feasibility of tungsten functional paper in electron grid therapy: a Monte Carlo study. Phys Med Biol, 62;(3):878-889. doi: 10.1088/1361-6560/62/3/878


29. Gholami S, Nedaie HA, Longo F, Ay MR, Wright S, Meigooni AS. (2016 Mar 8). Is grid therapy useful for all tumors and every grid block design? J Appl Clin Med Phys, 17;(2):206-219. doi: 10.1120/jacmp.v17i2.6015


30. Zhang X, Penagaricano J, Yan Y, Liang X, Morrill S, Griffin RJ, Corry P, Ratanatharathorn V. (2016 Jan 8). Spatially fractionated radiotherapy (GRID) using helical tomotherapy. J Appl Clin Med Phys, 17;(1):396-407. doi: 10.1120/jacmp.v17i1.5934


31. Zhu X, Driewer J, Li S, Verma V, Lei Y, Zhang M, Zhang Q, Zheng D, Cullip T, Chang SX, Wang AZ, Zhou S, Enke CA. (2015 Nov). Technical Note: Fabricating Cerrobend grids with 3D printing for spatially modulated radiation therapy: A feasibility study. Med Phys, 42;(11):6269-73. doi: 10.1118/1.4932223


32. Martínez-Rovira I, Fois G, Prezado Y. (2015 Feb). Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys, 42;(2):685-93. doi: 10.1118/1.4905042


33. Nobah A, Mohiuddin M, Devic S, Moftah B. (2015 Jan). Effective spatially fractionated GRID radiation treatment planning for a passive grid block. Br J Radiol, 88;(1045):20140363. doi: 10.1259/bjr.20140363


34. Fujimoto T, Monzen H, Nakata M, Okada T, Yano S, Takakura T, Kuwahara J, Sasaki M, Higashimura K, Hiraoka M. (2014 Nov). Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9MeV electron beams. Phys Med, 30;(7):838-42. doi: 10.1016/j.ejmp.2014.05.009


35. Costlow HN, Zhang H, Das IJ. (2014 Autumn). A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer. Med Dosim, 39;(3):218-26. doi: 10.1016/j.meddos.2014.02.004


36. Zhang H, Zhong H, Barth RF, Cao M, Das IJ. (2014 Feb). Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Med Phys, 41;(2):021727. doi: 10.1118/1.4862837


37. Wang X, Charlton MA, Esquivel C, Eng TY, Li Y, Papanikolaou N. (2013 Sep). Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy. Med Phys, 40;(9):093901. doi: 10.1118/1.4816653


38. Zhang X, Penagaricano J, Yan Y, Sharma S, Griffin RJ, Hardee M, Han EY, Ratanatharathom V. (2016 Feb). Application of Spatially Fractionated Radiation (GRID) to Helical Tomotherapy using a Novel TOMOGRID Template. Technol Cancer Res Treat, 15;(1):91-100. doi: 10.7785/tcrtexpress.2013.600261


39. Almendral P, Mancha PJ, Roberto D. (2013 May). Feasibility of a simple method of hybrid collimation for megavoltage grid therapy. Med Phys, 40;(5):051712. doi: 10.1118/1.4801902


40. Buckey C, Stathakis S, Cashon K, Gutierrez A, Esquivel C, Shi C, Papanikolaou N. (2010 Apr 26). Evaluation of a commercially-available block for spatially fractionated radiation therapy. J Appl Clin Med Phys, 11;(3):3163.


41. Stathakis S, Esquivel C, Gutiérrez AN, Shi C, Papanikolaou N. (2009 Oct). Dosimetric evaluation of multi-pattern spatially fractionated radiation therapy using a multi-leaf collimator and collapsed cone convolution superposition dose calculation algorithm. Appl Radiat Isot, 67;(10):1939-44. doi: 10.1016/j.apradiso.2009.06.012


42. Naqvi SA, Mohiuddin MM, Ha JK, Regine WF. (2008 Oct). Effects of tumor motion in GRID therapy. Med Phys, 35;(10):4435-42.


43. Zhang H, Wang JZ, Mayr N, Kong X, Yuan J, Gupta N, Lo S, Grecula J, Montebello J, Martin D, Yuh W. (2008 Jan 1). Fractionated grid therapy in treating cervical cancers: conventional fractionation or hypofractionation? Int J Radiat Oncol Biol Phys, 70;(1):280-8.


44. Meigooni AS, Gnaster M, Dou K, Johnson EL, Meigooni NJ, Kudrimoti M. (2007 Feb). Dosimetric evaluation of parallel opposed spatially fractionated radiation therapy of deep-seated bulky tumors. Med Phys, 34;(2):599-603.


45. Zhang H, Johnson EL, Zwicker RD. (2006 Dec 1). Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy. Int J Radiat Oncol Biol Phys, 66;(5):1576-83.


46. Meigooni AS, Dou K, Meigooni NJ, Gnaster M, Awan S, Dini S, Johnson EL. (2006 Sep). Dosimetric characteristics of a newly designed grid block for megavoltage photon radiation and its therapeutic advantage using a linear quadratic model. Med Phys, 33;(9):3165-73.


47. Ha JK, Zhang G, Naqvi SA, Regine WF, Yu CX. (2006 Jan). Feasibility of delivering grid therapy using a multileaf collimator. Med Phys, 33;(1):76-82.


48. Trapp JV, Warrington AP, Partridge M, Philps A, Glees J, Tait D, Ahmed R, Leach MO, Webb S. (2004 Oct 7). Measurement of the three-dimensional distribution of radiation dose in grid therapy. Phys Med Biol, 49;(19):N317-23.


49. Zwicker RD, Meigooni A, Mohiuddin M. (2004 Mar 15). Therapeutic advantage of grid irradiation for large single fractions. Int J Radiat Oncol Biol Phys, 58;(4):1309-15.


50. MARKS H. (1952 Mar). Clinical experience with irradiation through a grid. Radiology, 58;(3):338-42.


51. Meigooni AS, Parker SA, Zheng J, Kalbaugh KJ, Regine WF, Mohiuddin M. (2002 Spring). Dosimetric characteristics with spatial fractionation using electron grid therapy. Med Dosim, 27;(1):37-42.


52. Lin KH, Huang CY, Lin JP, Chu TC. (2002 Mar). Surface dose with grids in electron beam radiation therapy. Appl Radiat Isot, 56;(3):477-84.


53. Reiff JE, Huq MS, Mohiuddin M, Suntharalingam N. (1995 Nov 1). Dosimetric properties of megavoltage grid therapy. Int J Radiat Oncol Biol Phys, 33;(4):937-42.


reviews

1. Mayr NA, Mohiuddin M, Snider JW, Zhang H, Griffin RJ, Amendola BE, Hippe DS, Perez NC, Wu X, Lo SS, Regine WF, Simone CB 2nd. (2024 Feb). Practice Patterns of Spatially Fractionated Radiation Therapy: A Clinical Practice Survey. Adv Radiat Oncol, 9;(2):101308. doi: 10.1016/j.adro.2023.101308


2. Song CW, Terezakis S, Park WY, Paek SH, Kim MS, Cho LC, Griffin RJ. (2023 Nov 1). Preferential Tumor Vascular Damage Is the Common Antitumor Mechanism of High-Dose Hypofractionated Radiation Therapy: SABR, Spatially Fractionated Radiation Therapy, and FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys, 117;(3):701-704. doi: 10.1016/j.ijrobp.2023.05.015


3. Fernandez-Palomo C, Chang S, Prezado Y. (2022 Jul 26). Should Peak Dose Be Used to Prescribe Spatially Fractionated Radiation Therapy?-A Review of Preclinical Studies. Cancers (Basel), 14;(15):. doi: 10.3390/cancers14153625


4. Griffin RJ, Prise KM, McMahon SJ, Zhang X, Penagaricano J, Butterworth KT. (2020 Sep 1). History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. Br J Radiol, 93;(1113):20200217. doi: 10.1259/bjr.20200217


5. Griffin RJ, Ahmed MM, Amendola B, Belyakov O, Bentzen SM, Butterworth KT, Chang S, Coleman CN, Djonov V, Formenti SC, Glatstein E, Guha C, Kalnicki S, Le QT, Loo BW Jr, Mahadevan A, Massaccesi M, Maxim PG, Mohiuddin M, Mohiuddin M, Mayr NA, Obcemea C, Petersson K, Regine W, Roach M, Romanelli P, Simone CB 2nd, Snider JW, Spitz DR, Vikram B, Vozenin MC, Abdel-Wahab M, Welsh J, Wu X, Limoli CL. (2020 Jul 15). Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys, 107;(4):766-778. doi: 10.1016/j.ijrobp.2020.03.028


6. Billena C, Khan AJ. (2019 May 1). A Current Review of Spatial Fractionation: Back to the Future? Int J Radiat Oncol Biol Phys, 104;(1):177-187. doi: 10.1016/j.ijrobp.2019.01.073


Stereotactic Central/Core Ablative Raiation Therapy (SCART)

1. Yang J, Lu Q, Qi W, Kolb RD, Wang L, Li Y, Li S, Lin Y, Liu J, Mourad W, MirkhaghaniHaghighi F, Slavisa T, Wu X, You WC, Yang E, Hanlon A, Zhu A, Yan W. (2024). Stereotactic central/core ablative radiation therapy: results of a phase I study of a novel strategy to treat bulky tumor. Front Oncol, 14;():1364627. doi: 10.3389/fonc.2024.1364627


2. Yu KK, Yeo A, Ngan S, Chu J, Chang D, Siva S, Wong A, Kron T, Hardcastle N, Gaudreault M, Chesson T, Williams S, Burns M, Chander S. (2024 May). Partially Ablative Body Radiotherapy (PABR): A novel approach for palliative radiotherapy of locally advanced bulky unresectable sarcomas. Radiother Oncol, 194;():110185. doi: 10.1016/j.radonc.2024.110185


SFRT

1. Misa J, Volk A, Bernard ME, Clair WS, Pokhrel D. (2024 Jul 19). Dosimetric impact of intrafraction patient motion on MLC-based 3D-conformal spatially fractionated radiation therapy treatment of large and bulky tumors. J Appl Clin Med Phys, ;():e14469. doi: 10.1002/acm2.14469


2. Tubin S. (2024 Jul). A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol, 34;(3):323-336. doi: 10.1016/j.semradonc.2024.04.005


3. Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. (2024 Jul). Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol, 34;(3):310-322. doi: 10.1016/j.semradonc.2024.05.002


4. Zhang H, Wu X. (2024 Jul). Which Modality of SFRT Should be Considered First for Bulky Tumor Radiation Therapy, GRID or LATTICE? Semin Radiat Oncol, 34;(3):302-309. doi: 10.1016/j.semradonc.2024.04.006


5. Sheikh K, Li H, Wright JL, Yanagihara TK, Halthore A. (2024 Jul). The Peaks and Valleys of Photon Versus Proton Spatially Fractionated Radiotherapy. Semin Radiat Oncol, 34;(3):292-301. doi: 10.1016/j.semradonc.2024.04.007


6. Jenkins SV, Johnsrud AJ, Dings RPM, Griffin RJ. (2024 Jul). Bystander Effects in Spatially Fractionated Radiation Therapy: From Molecule To Organism To Clinical Implications. Semin Radiat Oncol, 34;(3):284-291. doi: 10.1016/j.semradonc.2024.05.004


7. McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. (2024 Jul). Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol, 34;(3):276-283. doi: 10.1016/j.semradonc.2024.04.002


8. Takashima ME, Berg TJ, Morris ZS. (2024 Jul). The Effects of Radiation Dose Heterogeneity on the Tumor Microenvironment and Anti-Tumor Immunity. Semin Radiat Oncol, 34;(3):262-271. doi: 10.1016/j.semradonc.2024.04.004


9. Griffin RJ, Guha C. (2024 Jul). Innovations in Physics, Biology and Clinical Translation of Spatially Fractionated and FLASH Radiotherapy. Semin Radiat Oncol, 34;(3):259-261. doi: 10.1016/j.semradonc.2024.05.005


10. Goddu SM, Hao Y, Ji Z, Setianegara J, Liu F, Green W, Sobotka LG, Zhao T, Perkins S, Darafsheh A. (2024 Jul). High spatiotemporal resolution scintillation imaging of pulsed pencil beam scanning proton beams produced by a gantry-mounted synchrocyclotron. Med Phys, 51;(7):4996-5006. doi: 10.1002/mp.17116


11. Castorina P, Castiglione F, Ferini G, Forte S, Martorana E. (2024 Apr 21). Computational Approach for Spatially Fractionated Radiation Therapy (SFRT) and Immunological Response in Precision Radiation Therapy. J Pers Med, 14;(4):. doi: 10.3390/jpm14040436


12. Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. (2024 May 10). Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol, 69;(10):. doi: 10.1088/1361-6560/ad4192


13. Tucker WW, Mazur TR, Schmidt MC, Hilliard J, Badiyan S, Spraker MB, Kavanaugh JA. (2024 Jan). Script-based implementation of automatic grid placement for lattice stereotactic body radiation therapy. Phys Imaging Radiat Oncol, 29;():100549. doi: 10.1016/j.phro.2024.100549


14. At B, Velayudham R. (2024 Autumn). Assessing dosimetric advancements in spatially fractionated radiotherapy: From grids to lattices. Med Dosim, 49;(3):206-214. doi: 10.1016/j.meddos.2023.12.003


15. Modic Z, Markelc B, Jesenko T. (2024). Partial-Volume Irradiation of Murine Tumors. Methods Mol Biol, 2773;():97-104. doi: 10.1007/978-1-0716-3714-2_10


16. Li H, Mayr NA, Griffin RJ, Zhang H, Pokhrel D, Grams M, Penagaricano J, Chang S, Spraker MB, Kavanaugh J, Lin L, Sheikh K, Mossahebi S, Simone CB, Roberge D, Snider JW, Sabouri P, Molineu A, Xiao Y, Benedict SH. (2024 Jul 1). Overview and Recommendations for Prospective Multi-institutional Spatially Fractionated Radiation Therapy Clinical Trials. Int J Radiat Oncol Biol Phys, 119;(3):737-749. doi: 10.1016/j.ijrobp.2023.12.013


17. Ginn J, Duriseti S, Mazur T, Spraker M, Kavanaugh J. (2024 Jul-Aug). A Dose Accumulation Assessment of Alignment Errors During Spatially Fractionated Radiation Therapy. Pract Radiat Oncol, 14;(4):e283-e290. doi: 10.1016/j.prro.2023.11.015


18. Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. (2024 Jan). Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol, 44;():100691. doi: 10.1016/j.ctro.2023.100691


19. Zhang H, Ma L, Lim A, Ye J, Lukas L, Li H, Mayr NA, Chang EL. (2024 Feb 1). Dosimetric Validation for Prospective Clinical Trial of GRID Collimator-Based Spatially Fractionated Radiation Therapy: Dose Metrics Consistency and Heterogeneous Pattern Reproducibility. Int J Radiat Oncol Biol Phys, 118;(2):565-573. doi: 10.1016/j.ijrobp.2023.08.061


20. Clements N, Esplen N, Bazalova-Carter M. (2023 Aug). A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med, 112;():102637. doi: 10.1016/j.ejmp.2023.102637


21. Pedroso Partichelli F, de Arruda Botelho M. (2023 Winter). Evaluation of the applicability of the lattice radiotherapy technique at the National Cancer Institute - INCA. Med Dosim, 48;(4):245-248. doi: 10.1016/j.meddos.2023.05.003


22. Grams MP, Deufel CL, Kavanaugh JA, Corbin KS, Ahmed SK, Haddock MG, Lester SC, Ma DJ, Petersen IA, Finley RR, Lang KG, Spreiter SS, Park SS, Owen D. (2023 Jul). Clinical aspects of spatially fractionated radiation therapy treatments. Phys Med, 111;():102616. doi: 10.1016/j.ejmp.2023.102616


23. Bertho A, Iturri L, Prezado Y. (2023). Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. Int Rev Cell Mol Biol, 376;():37-68. doi: 10.1016/bs.ircmb.2022.11.005


24. Tubin S, Vozenin MC, Prezado Y, Durante M, Prise KM, Lara PC, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin MM, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. (2023 May). Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol, 40;():100605. doi: 10.1016/j.ctro.2023.100605


25. Chang S. (2023 Jun). A journey to understand SFRT. Med Phys, 50 Suppl 1;():40-44. doi: 10.1002/mp.16314


26. Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. (2023). Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res, 15;():113-122. doi: 10.2147/CMAR.S393934


27. Mahmoudi F, Mohammadi N, Haghighi M, Alirezaei Z, Jabbari I, Chegeni N, Elmtalab S, Vega-Carrillo HR, Kazemian A, Geraily G, Karimi AH. (2023). How much should you worry about contaminant neutrons in spatially fractionated grid radiation therapy? PLoS One, 18;(1):e0280433. doi: 10.1371/journal.pone.0280433


28. Fernandez-Palomo C, Chang S, Prezado Y. (2022 Jul 26). Should Peak Dose Be Used to Prescribe Spatially Fractionated Radiation Therapy?-A Review of Preclinical Studies. Cancers (Basel), 14;(15):. doi: 10.3390/cancers14153625


29. Pokhrel D, Bernard ME, Mallory R, St Clair W, Kudrimoti M. (2022 May). Conebeam CT-guided 3D MLC-based spatially fractionated radiation therapy for bulky masses. J Appl Clin Med Phys, 23;(5):e13608. doi: 10.1002/acm2.13608


30. Butterworth KT, Ghita M, McMahon SJ, Mcgarry CK, Griffin RJ, Hounsell AR, Prise KM. (2017 Jan). Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy. Br J Radiol, 90;(1069):20160485. doi: 10.1259/bjr.20160485


microbeam

1. Lin Y, Li W, Wang A, Johnson D, Gan GN, Gao H. (2024). Comprehensive dosimetric commissioning of proton minibeam radiotherapy on a single gantry proton system. Front Oncol, 14;():1421869. doi: 10.3389/fonc.2024.1421869


2. Grams MP, Mateus CQ, Mashayekhi M, Mutter RW, Djonov V, Fazzari JM, Xiao H, Frechette KM, Wentworth AJ, Morris JM, Klebel B, Thull JC, Guenzel RM, Wismayer DJS, Lucien F, Park SS, Lester SC. (2024 Jul 11). Minibeam Radiation Therapy Treatment (MBRT): Commissioning and First Clinical Implementation. Int J Radiat Oncol Biol Phys, ;():. pii: S0360-3016(24)02948-1. doi: 10.1016/j.ijrobp.2024.06.035


3. Kundapur V, Torlakovic E, Auer RN. (2024 Jul). The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin Radiat Oncol, 34;(3):337-343. doi: 10.1016/j.semradonc.2024.04.003


4. Carver A, Baker S, Dumbill A, Horton S, Green S. (2024 Jun 19). Design and characterisation of a minibeam collimator utilising Monte Carlo simulation and a clinical linear accelerator. Phys Med Biol, 69;(13):. doi: 10.1088/1361-6560/ad4d52


5. Lin Y, Li W, Johnson D, Prezado Y, Gan GN, Gao H. (2024 Jun). Development and characterization of the first proton minibeam system for single-gantry proton facility. Med Phys, 51;(6):3995-4006. doi: 10.1002/mp.17074


6. Stengl C, Muñoz ID, Arbes E, Rauth E, Christensen JB, Vedelago J, Runz A, Jäkel O, Seco J. (2024 Aug). Dosimetric study for breathing-induced motion effects in an abdominal pancreas phantom for carbon ion mini-beam radiotherapy. Med Phys, 51;(8):5618-5631. doi: 10.1002/mp.17077


7. Bertho A, Ortiz R, Maurin M, Juchaux M, Gilbert C, Espenon J, Ramasamy G, Patriarca A, De Marzi L, Pouzoulet F, Prezado Y. (2024 Apr 15). Thoracic Proton Minibeam Radiation Therapy: Tissue Preservation and Survival Advantage Over Conventional Proton Therapy. Int J Radiat Oncol Biol Phys, ;():. pii: S0360-3016(24)00510-8. doi: 10.1016/j.ijrobp.2024.04.011


8. Reaz F, Traneus E, Bassler N. (2024 Apr 11). Tuning spatially fractionated radiotherapy dose profiles using the moiré effect. Sci Rep, 14;(1):8468. doi: 10.1038/s41598-024-55104-7


9. Ahmed M, Bicher S, Combs SE, Lindner R, Raulefs S, Schmid TE, Spasova S, Stolz J, Wilkens JJ, Winter J, Bartzsch S. (2024 Jan 30). In Vivo Microbeam Radiation Therapy at a Conventional Small Animal Irradiator. Cancers (Basel), 16;(3):. doi: 10.3390/cancers16030581


10. di Franco F, Rosuel N, Gallin-Martel L, Gallin-Martel ML, Ghafooryan-Sangchooli M, Keshmiri S, Motte JF, Muraz JF, Pellicioli P, Ruat M, Serduc R, Verry C, Dauvergne D, Adam JF. (2023 Nov 1). Monocrystalline diamond detector for online monitoring during synchrotron microbeam radiotherapy. J Synchrotron Radiat, 30;(Pt 6):1076-1085. doi: 10.1107/S160057752300752X


11. Chtcheprov P, Hadsell M, Burk L, Ger R, Zhang L, Yuan H, Lee YZ, Chang S, Lu J, Zhou O. (2013 Feb 9). Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array. Proc SPIE Int Soc Opt Eng, 8671;():. pii: 86711Z


12. Sharma S, Narayanasamy G, Przybyla B, Webber J, Boerma M, Clarkson R, Moros EG, Corry PM, Griffin RJ. (2017 Feb). Advanced Small Animal Conformal Radiation Therapy Device. Technol Cancer Res Treat, 16;(1):45-56. doi: 10.1177/1533034615626011


13. Yuan H, Zhang L, Frank JE, Inscoe CR, Burk LM, Hadsell M, Lee YZ, Lu J, Chang S, Zhou O. (2015 Sep). Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study. Radiat Res, 184;(3):322-33. doi: 10.1667/RR13919.1


14. Belley MD, Stanton IN, Hadsell M, Ger R, Langloss BW, Lu J, Zhou O, Chang SX, Therien MJ, Yoshizumi TT. (2015 Apr). Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam. Med Phys, 42;(4):1966-72. doi: 10.1118/1.4915078


15. Fontanella AN, Boss MK, Hadsell M, Zhang J, Schroeder T, Berman KG, Dewhirst MW, Chang S, Palmer GM. (2015 Feb). Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis. Radiat Res, 183;(2):147-58. doi: 10.1667/RR13712.1


16. Zhang L, Yuan H, Inscoe C, Chtcheprov P, Hadsell M, Lee Y, Lu J, Chang S, Zhou O. (2014 Dec). Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment. Expert Rev Anticancer Ther, 14;(12):1411-8. doi: 10.1586/14737140.2014.978293


17. Chtcheprov P, Burk L, Yuan H, Inscoe C, Ger R, Hadsell M, Lu J, Zhang L, Chang S, Zhou O. (2014 Aug). Physiologically gated microbeam radiation using a field emission x-ray source array. Med Phys, 41;(8):081705. doi: 10.1118/1.4886015


18. Hadsell M, Cao G, Zhang J, Burk L, Schreiber T, Schreiber E, Chang S, Lu J, Zhou O. (2014 Jun). Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med Phys, 41;(6):061710. doi: 10.1118/1.4873683


19. Zhang L, Yuan H, Burk LM, Inscoe CR, Hadsell MJ, Chtcheprov P, Lee YZ, Lu J, Chang S, Zhou O. (2014 Mar 7). Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array. Phys Med Biol, 59;(5):1283-303. doi: 10.1088/0031-9155/59/5/1283


20. Hadsell M, Zhang J, Laganis P, Sprenger F, Shan J, Zhang L, Burk L, Yuan H, Chang S, Lu J, Zhou O. (2013 Oct 28). A first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology. Appl Phys Lett, 103;(18):183505.


21. Schreiber EC, Chang SX. (2012 Aug). Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology. Med Phys, 39;(8):4669-78. doi: 10.1118/1.4728220


22. Griffin RJ, Koonce NA, Dings RP, Siegel E, Moros EG, Bräuer-Krisch E, Corry PM. (2012 Jun). Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiat Res, 177;(6):804-12.


SFRT biology

1. Lukas L, Zhang H, Cheng K, Epstein A. (2023 Dec). Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep, 25;(12):1483-1496. doi: 10.1007/s11912-023-01473-7


2. Chi MS, Tien DC, Chi KH. (2023). Inhomogeneously distributed ferroptosis with a high peak-to-valley ratio may improve the antitumor immune response. Front Oncol, 13;():1178681. doi: 10.3389/fonc.2023.1178681


3. Cho YB, Yoon N, Suh JH, Scott JG. (2023 Aug 7). Radio-immune response modelling for spatially fractionated radiotherapy. Phys Med Biol, 68;(16):. doi: 10.1088/1361-6560/ace819


4. Cho YB, Yoon N, Suh JH, Jacob SG. (2023 Apr 30). Radio-Immune Response Modelling for Spatially Fractionated Radiotherapy. bioRxiv, ;():. pii: 2023.04.28.538767. doi: 10.1101/2023.04.28.538767


5. Serduc R, Bouchet A. (2023 May 1). MRT-boost as the last fraction may be the most efficient irradiation schedule for increased survival times in a rat glioma model. J Synchrotron Radiat, 30;(Pt 3):591-595. doi: 10.1107/S1600577523002606


6. Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. (2023 Jan 26). Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel), 15;(3):. doi: 10.3390/cancers15030768


7. Arous D, Lie JL, Håland BV, Børsting M, Edin NFJ, Malinen E. (2023 Jan 13). 2D mapping of radiation dose and clonogenic survival for accurate assessment ofin vitroX-ray GRID irradiation effects. Phys Med Biol, 68;(2):. doi: 10.1088/1361-6560/acaf20


8. Rogers LJ, Harley JC, McKenzie DR, Suchowerska N. (2022). Radiation responses of cancer and normal cells to split dose fractions with uniform and grid fields: increasing the therapeutic ratio. Int J Radiat Biol, 98;(9):1424-1431. doi: 10.1080/09553002.2022.2047826


9. Price LSL, Rivera JN, Madden AJ, Herity LB, Piscitelli JA, Mageau S, Santos CM, Roques JR, Midkiff B, Feinberg NN, Darr D, Chang SX, Zamboni WC. (2021). Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model. Ther Adv Med Oncol, 13;():17588359211053700. doi: 10.1177/17588359211053700


10. Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. (2021 Nov 11). Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol, 66;(22):. doi: 10.1088/1361-6560/ac3119


11. Rivera JN, Kierski TM, Kasoji SK, Abrantes AS, Dayton PA, Chang SX. (2020). Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One, 15;(6):e0229053. doi: 10.1371/journal.pone.0229053


12. Nolan MW, Gieger TL, Karakashian AA, Nikolova-Karakashian MN, Posner LP, Roback DM, Rivera JN, Chang S. (2017 Jun). Outcomes of Spatially Fractionated Radiotherapy (GRID) for Bulky Soft Tissue Sarcomas in a Large Animal Model. Technol Cancer Res Treat, 16;(3):357-365. doi: 10.1177/1533034617690980


13. Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. (2015 Jan 1). High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett, 356;(1):52-7. doi: 10.1016/j.canlet.2013.10.032


14. Asur RS, Sharma S, Chang CW, Penagaricano J, Kommuru IM, Moros EG, Corry PM, Griffin RJ. (2012 Jun). Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiat Res, 177;(6):751-65.


15. Sathishkumar S, Boyanovsky B, Karakashian AA, Rozenova K, Giltiay NV, Kudrimoti M, Mohiuddin M, Ahmed MM, Nikolova-Karakashian M. (2005 Sep). Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther, 4;(9):979-86.


16. Sathishkumar S, Dey S, Meigooni AS, Regine WF, Kudrimoti MS, Ahmed MM, Mohiuddin M. (2002 Apr). The impact of TNF-alpha induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technol Cancer Res Treat, 1;(2):141-7.


17. Miller RC, Wilson KG, Feola JM, Urano M, Yaes RJ, McLaughlin P, Maruyama Y. (1992 Jul). Megavoltage grid total body irradiation of C3Hf/SED mice. Strahlenther Onkol, 168;(7):423-6.


clinical

1. Pedroso Partichelli F, de Arruda Botelho M. (2023 Winter). Evaluation of the applicability of the lattice radiotherapy technique at the National Cancer Institute - INCA. Med Dosim, 48;(4):245-248. doi: 10.1016/j.meddos.2023.05.003


2. Torelli N, Papp D, Unkelbach J. (2023 Aug). Spatiotemporal fractionation schemes for stereotactic radiosurgery of multiple brain metastases. Med Phys, 50;(8):5095-5114. doi: 10.1002/mp.16457


3. Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. (2023). Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res, 15;():113-122. doi: 10.2147/CMAR.S393934


4. Price AT, Schiff JP, Zhu T, Mazur T, Kavanaugh JA, Maraghechi B, Green O, Kim H, Spraker MB, Henke LE. (2023 Mar). First treatments for Lattice stereotactic body radiation therapy using magnetic resonance image guided radiation therapy. Clin Transl Radiat Oncol, 39;():100577. doi: 10.1016/j.ctro.2023.100577


5. Iori F, Cappelli A, "DAngelo E", Cozzi S, Ghersi SF, De Felice F, Ciammella P, Bruni A, Iotti C. (2023 Mar). Lattice Radiation Therapy in clinical practice: A systematic review. Clin Transl Radiat Oncol, 39;():100569. doi: 10.1016/j.ctro.2022.100569


6. Ferini G, Parisi S, Lillo S, Viola A, Minutoli F, Critelli P, Valenti V, Illari SI, Brogna A, Umana GE, Ferrantelli G, Lo Giudice G, Carrubba C, Zagardo V, Santacaterina A, Leotta S, Cacciola A, Pontoriero A, Pergolizzi S. (2022 Aug 12). Impressive Results after "Metabolism-Guided" Lattice Irradiation in Patients Submitted to Palliative Radiation Therapy: Preliminary Results of LATTICE_01 Multicenter Study. Cancers (Basel), 14;(16):. doi: 10.3390/cancers14163909


7. Schiff JP, Spraker MB, Duriseti S, Shaikh S, Murad HF, Mutch DG, Robinson CG, Kavanaugh J, Lin AJ. (2022 Jan-Feb). Tumor Lysis Syndrome in a Patient With Metastatic Endometrial Cancer Treated With Lattice Stereotactic Body Radiation Therapy. Adv Radiat Oncol, 7;(1):100797. doi: 10.1016/j.adro.2021.100797


8. Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, Lin Q, Zhang C, Zheng F, Yan W, Zheng Y, Wu X, Xu B. (2020). Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report. Front Oncol, 10;():548132. doi: 10.3389/fonc.2020.548132


9. Snider JW, Molitoris J, Shyu S, Diwanji T, Rice S, Kowalski E, Decesaris C, Remick JS, Yi B, Zhang B, Hall A, Hanna N, Ng VY, Regine WF. (2020 Dec 1). Spatially Fractionated Radiotherapy (GRID) Prior to Standard Neoadjuvant Conventionally Fractionated Radiotherapy for Bulky, High-Risk Soft Tissue and Osteosarcomas: Feasibility, Safety, and Promising Pathologic Response Rates. Radiat Res, 194;(6):707-714. doi: 10.1667/RADE-20-00100.1


10. Amendola BE, Perez NC, Mayr NA, Wu X, Amendola M. (2020 Dec 1). Spatially Fractionated Radiation Therapy Using Lattice Radiation in Far-advanced Bulky Cervical Cancer: A Clinical and Molecular Imaging and Outcome Study. Radiat Res, 194;(6):724-736. doi: 10.1667/RADE-20-00038.1


11. Mohiuddin M, Lynch C, Gao M, Hartsell W. (2020 Mar). Early clinical results of proton spatially fractionated GRID radiation therapy (SFGRT). Br J Radiol, 93;(1107):20190572. doi: 10.1259/bjr.20190572


12. Neuner G, Mohiuddin MM, Vander Walde N, Goloubeva O, Ha J, Yu CX, Regine WF. (2012 Apr 1). High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT. Int J Radiat Oncol Biol Phys, 82;(5):1642-9. doi: 10.1016/j.ijrobp.2011.01.065


13. Peñagarícano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P. (2010 Apr). Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. Int J Radiat Oncol Biol Phys, 76;(5):1369-75. doi: 10.1016/j.ijrobp.2009.03.030


14. Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M. (2006 Dec). Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technol Cancer Res Treat, 5;(6):607-12.


15. Mohiuddin M, Fujita M, Regine WF, Megooni AS, Ibbott GS, Ahmed MM. (1999 Oct 1). High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys, 45;(3):721-7.


16. Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. (1990 Jul 1). Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation. A pilot study. Cancer, 66;(1):114-8.