Research

Search

clinical trial designs

1. Amendola BE, Mahadevan A, Blanco Suarez JM, Griffin RJ, Wu X, Perez NC, Hippe DS, Simone CB 2nd, Mohiuddin M, Mohiuddin M, Snider JW, Zhang H, Le QT, Mayr NA. (2022 Aug 31). An International Consensus on the Design of Prospective Clinical-Translational Trials in Spatially Fractionated Radiation Therapy for Advanced Gynecologic Cancer. Cancers (Basel), 14;(17):. doi: 10.3390/cancers14174267


2. Mayr NA, Snider JW, Regine WF, Mohiuddin M, Hippe DS, Peñagarícano J, Mohiuddin M, Kudrimoti MR, Zhang H, Limoli CL, Le QT, Simone CB 2nd. (2022 Mar-Apr). An International Consensus on the Design of Prospective Clinical-Translational Trials in Spatially Fractionated Radiation Therapy. Adv Radiat Oncol, 7;(2):100866. doi: 10.1016/j.adro.2021.100866


lattice therapy physics

1. Yuan K, Zhou X, Guo H, Peng Y, Xu P, Li L, Li J, Li H, Lu S, Feng M, Lang J, Yang Y, Wang X. (2025 Jul 10). Feasibility Study of Functional MRI-Based Biologically Guided Lattice Radiation Therapy. Int J Radiat Oncol Biol Phys, ;():. pii: S0360-3016(25)04636-X. doi: 10.1016/j.ijrobp.2025.06.3901


2. Yang C, Li J, Li W, Setianegara J, Lin Y, Wang F, Gao H. (2025 Jul 15). A predictive model studying the impact of timing and order for the combination-regime of spatially fractionated radiation therapy and stereotactic body radiation therapy. Phys Med Biol, 70;(14):. doi: 10.1088/1361-6560/adec38


3. Yedekci Y, Kıvanc H, Kahvecioglu A, Yazici G. (2025 Jun 17). Gyroscopic radiosurgery-based lattice therapy for intracranial tumors: A dosimetric study. Med Dosim, ;():. pii: S0958-3947(25)00033-0. doi: 10.1016/j.meddos.2025.05.004


4. Zhu L, Yu NY, Ahmed SK, Ashman JB, Toesca DS, Grams MP, Deufel CL, Duan J, Chen Q, Rong Y. (2025 Jul). Simulation-free workflow for lattice radiation therapy using deep learning predicted synthetic computed tomography: A feasibility study. J Appl Clin Med Phys, 26;(7):e70137. doi: 10.1002/acm2.70137


5. Tong X, Zhang W, Zhu YN, Hong X, Wang C, Setianegara J, Lin Y, Gao H. (2025 May 20). A fully flexible joint lattice position and dose optimization method for LATTICE therapy. ArXiv, ;():.


6. Setianegara J, Zhu YN, Zhu M, Badkul R, Zhao T, Li H, Wang F, Akhavan D, Gao H, Lin Y. (2025 May 19). Proton GRID and LATTICE treatment planning techniques for clinical liver SFRT treatments. Phys Med Biol, 70;(11):. doi: 10.1088/1361-6560/add2cc


7. Seol Y, Lee YK, Kim BJ, Choi KH, Hong JH, Park CB, Kim SH, Park HW, Kim JI, Cheon W, Kang YN, Choi BO. (2025). Feasibility of optimal vertex size and spacing for lattice radiotherapy implementation using helical tomotherapy. Front Oncol, 15;():1512064. doi: 10.3389/fonc.2025.1512064


8. Lee YK, Seol Y, Kim BJ, Choi KH, Hong JH, Park CB, Kim SH, Park HW, Cheon W, Kang YN, Choi BO. (2024). A preliminary study of linear accelerator-based spatially fractionated radiotherapy. Front Oncol, 14;():1495216. doi: 10.3389/fonc.2024.1495216


9. Zhu YN, Zhang W, Setianegara J, Lin Y, Traneus E, Long Y, Zhang X, Badkul R, Akhavan D, Wang F, Chen RC, Gao H. (2024 Oct 25). Proton ARC based LATTICE radiation therapy: feasibility study, energy layer optimization and LET optimization. Phys Med Biol, 69;(21):. doi: 10.1088/1361-6560/ad8855


10. Botti A, Finocchiaro D, Panico N, Trojani V, Paolani G, Iori F, Sghedoni R, Cagni E, Lambertini D, Ciammella P, Iotti C, Iori M. (2024 Oct). LatticeOpt: An automatic tool for planning optimisation of spatially fractionated stereotactic body radiotherapy. Phys Med, 126;():104823. doi: 10.1016/j.ejmp.2024.104823


11. Kunkyab T, Magliari A, Jirasek A, Mou B, Hyde D. (2024 Nov). Semi-automated vertex placement for lattice radiotherapy and dosimetric verification using 3D polymer gel dosimetry. J Appl Clin Med Phys, 25;(11):e14489. doi: 10.1002/acm2.14489


12. Mossahebi S, Molitoris JK, Poirier Y, Jatczak J, Zhang B, Mohindra P, Ferris M, Regine WF, Yi B. (2024 Nov 15). Clinical Implementation and Dosimetric Evaluation of a Robust Proton Lattice Planning Strategy Using Primary and Robust Complementary Beams. Int J Radiat Oncol Biol Phys, 120;(4):1149-1158. doi: 10.1016/j.ijrobp.2024.06.009


13. Zhang W, Lin Y, Wang F, Badkul R, Chen RC, Gao H. (2023 Dec). Lattice position optimization for LATTICE therapy. Med Phys, 50;(12):7359-7367. doi: 10.1002/mp.16572


14. Zhang W, Li W, Lin Y, Wang F, Chen RC, Gao H. (2023 Mar 1). TVL1-IMPT: Optimization of Peak-to-Valley Dose Ratio Via Joint Total-Variation and L1 Dose Regularization for Spatially Fractionated Pencil-Beam-Scanning Proton Therapy. Int J Radiat Oncol Biol Phys, 115;(3):768-778. doi: 10.1016/j.ijrobp.2022.09.064


15. Duriseti S, Kavanaugh J, Goddu S, Price A, Knutson N, Reynoso F, Michalski J, Mutic S, Robinson C, Spraker MB. (2021 May-Jun). Spatially fractionated stereotactic body radiation therapy (Lattice) for large tumors. Adv Radiat Oncol, 6;(3):100639. doi: 10.1016/j.adro.2020.100639


16. Murphy NL, Philip R, Wozniak M, Lee BH, Donnelly ED, Zhang H. (2020 Nov). A simple dosimetric approach to spatially fractionated GRID radiation therapy using the multileaf collimator for treatment of breast cancers in the prone position. J Appl Clin Med Phys, 21;(11):105-114. doi: 10.1002/acm2.13040


17. Wu X, Perez NC, Zheng Y, Li X, Jiang L, Amendola BE, Xu B, Mayr NA, Lu JJ, Hatoum GF, Zhang H, Chang SX, Griffin RJ, Guha C. (2020 Dec 1). The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat Res, 194;(6):737-746. doi: 10.1667/RADE-20-00066.1


18. Jin JY, Zhao B, Kaminski JM, Wen N, Huang Y, Vender J, Chetty IJ, Kong FM. (2015 Dec). A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiother Oncol, 117;(3):483-6. doi: 10.1016/j.radonc.2015.07.047


GRID therapy physics

1. Setianegara J, Green W, Zhao X, Mazur TR, Darafsheh A, Apicelli AJ, Badiyan SN, Perkins SM, Zhao T, Prusator MT. (2025 Jul). Design, fabrication, commissioning, and dosimetric verification of a GRID collimator for proton SFRT on a compact proton therapy machine. Med Phys, 52;(7):e17939. doi: 10.1002/mp.17939


2. Misa J, St Clair W, Pokhrel D. (2025 Jul). Demonstration of an enhanced dosing pattern for debulking large and bulky unresectable tumors via differential hole-size spatially fractionated radiotherapy. J Appl Clin Med Phys, 26;(7):e70127. doi: 10.1002/acm2.70127


3. Acuña MI, Lamirault C, Larcher T, Brisebard E, Schneider T, Juchaux M, Iglesias-Rey R, Fernández-Rodicio S, Aguiar P, Gómez-Lado N, Martínez-Rovira I, González-Vegas R, Yousef I, Gomez-Caamano A, Pombar M, Luna V, Sanchez M, Prezado Y. (2025 Apr 5). Mini-GRID therapy delivers optimised spatially fractionated radiation therapy using a flattening free filter accelerator. Commun Med (Lond), 5;(1):101. doi: 10.1038/s43856-025-00809-7


4. Misa J, Knight J 2nd, Clair WS, Pokhrel D. (2025 Autumn). Plan evaluation tool for spatially fractionated radiation therapy for unresectable large tumors via spatial biological effective dose modeling in combination therapy. Med Dosim, 50;(3):237-243. doi: 10.1016/j.meddos.2025.02.002


5. Bergeron P, Milliat F, Deutsch E, Mondini M. (2024 Dec 31). Heterogeneous intratumor irradiation: a new partner for immunotherapy. Oncoimmunology, 13;(1):2434280. doi: 10.1080/2162402X.2024.2434280


6. Khan AU, Sengupta B, Das IJ. (2024 Nov 11). The role of volume averaging effects, beam hardening, and phantom scatter in dosimetry of grid therapy. Phys Med Biol, 69;(22):. doi: 10.1088/1361-6560/ad8c91


7. Zhang W, Traneus E, Lin Y, Chen RC, Gao H. (2024 Oct). A novel treatment planning method via scissor beams for uniform-target-dose proton GRID with peak-valley-dose-ratio optimization. Med Phys, 51;(10):7047-7056. doi: 10.1002/mp.17307


8. Xu Z, Balik S, Woods K, Shen Z, Cheng C, Cui J, Gallogly H, Chang E, Lukas L, Lim A, Natsuaki Y, Ye J, Ma L, Zhang H. (2024 Aug). Dosimetric characterization for GRID collimator-based spatially fractionated radiation therapy: Dosimetric parameter acquisition and machine interchangeability investigation. J Appl Clin Med Phys, 25;(8):e14410. doi: 10.1002/acm2.14410


9. Das IJ, Khan AU, Dogan SK, Longo M. (2024 May 29). Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol, 97;(1158):1088-1098. doi: 10.1093/bjr/tqae060


10. Karimi AH, Das IJ, Chegeni N, Jabbari I, Jafari F, Geraily G. (2024 Feb 24). Beam quality and the mystery behind the lower percentage depth dose in grid radiation therapy. Sci Rep, 14;(1):4510. doi: 10.1038/s41598-024-55197-0


11. Clements N, Esplen N, Bateman J, Robertson C, Dosanjh M, Korysko P, Farabolini W, Corsini R, Bazalova-Carter M. (2024 Feb 19). Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations. Phys Med Biol, 69;(5):. doi: 10.1088/1361-6560/ad247d


12. Halthore A, Fellows Z, Tran A, Deville C Jr, Wright JL, Meyer J, Li H, Sheikh K. (2023 Winter). Treatment Planning of Bulky Tumors Using Pencil Beam Scanning Proton GRID Therapy. Int J Part Ther, 9;(3):40-49. doi: 10.14338/IJPT-22-00028


13. Ertan F, Yeginer M, Zorlu F. (2023 Feb 1). Dosimetric Performance Evaluation of MLC-based and Cone-based 3D Spatially Fractionated LATTICE Radiotherapy. Radiat Res, 199;(2):161-169. doi: 10.1667/RADE-22-00020.1


14. Clements N, Bazalova-Carter M, Esplen N. (2022 Sep 7). Monte Carlo optimization of a GRID collimator for preclinical megavoltage ultra-high dose rate spatially-fractionated radiation therapy. Phys Med Biol, 67;(18):. doi: 10.1088/1361-6560/ac8c1a


15. Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. (2022 Oct). Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol, 175;():169-177. doi: 10.1016/j.radonc.2022.08.004


16. Pokhrel D, Bernard ME, Mallory R, St Clair W, Kudrimoti M. (2022 May). Conebeam CT-guided 3D MLC-based spatially fractionated radiation therapy for bulky masses. J Appl Clin Med Phys, 23;(5):e13608. doi: 10.1002/acm2.13608


17. Grams MP, Tseung HSWC, Ito S, Zhang Y, Owen D, Park SS, Ahmed SK, Petersen IA, Haddock MG, Harmsen WS, Ma DJ. (2022 Sep-Oct). A Dosimetric Comparison of Lattice, Brass, and Proton Grid Therapy Treatment Plans. Pract Radiat Oncol, 12;(5):e442-e452. doi: 10.1016/j.prro.2022.03.005


18. Zhang X, Griffin RJ, Galhardo EP, Penagaricano J. (2022 Jan-Dec). Feasibility Study of 3D-VMAT-Based GRID Therapy. Technol Cancer Res Treat, 21;():15330338221086420. doi: 10.1177/15330338221086420


19. Zhang H, Grams MP, Foy JJ, Mayr NA. (2022 Feb 18). A Dosimetric Parameter Reference Look-Up Table for GRID Collimator-Based Spatially Fractionated Radiation Therapy. Cancers (Basel), 14;(4):. doi: 10.3390/cancers14041037


20. Smith BR, Nelson NP, Geoghegan TJ, Patwardhan KA, Hill PM, Yu J, Gutiérrez AN, Allen BG, Hyer DE. (2022 Apr). The dosimetric enhancement of GRID profiles using an external collimator in pencil beam scanning proton therapy. Med Phys, 49;(4):2684-2698. doi: 10.1002/mp.15523


21. Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. (2022 Feb 18). An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol, 67;(4):. doi: 10.1088/1361-6560/ac508c


22. Mahmoudi F, Chegeni N, Bagheri A, Fatahi Asl J, Batiar MT. (2021 Aug). Impact of radiobiological models on the calculation of the therapeutic parameters of Grid therapy for breast cancer. Appl Radiat Isot, 174;():109776. doi: 10.1016/j.apradiso.2021.109776


23. Zhang H, Wu X, Zhang X, Chang SX, Megooni A, Donnelly ED, Ahmed MM, Griffin RJ, Welsh JS, Simone CB 2nd, Mayr NA. (2020 Dec 1). Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group. Radiat Res, 194;(6):665-677. doi: 10.1667/RADE-20-00047.1


24. Pokhrel D, Halfman M, Sanford L, Chen Q, Kudrimoti M. (2020 Mar). A novel, yet simple MLC-based 3D-crossfire technique for spatially fractionated GRID therapy treatment of deep-seated bulky tumors. J Appl Clin Med Phys, 21;(3):68-74. doi: 10.1002/acm2.12826


25. Kijima K, Krisanachinda A, Tamura M, Nishimura Y, Monzen H. (2019 Jun). Feasibility of a Tungsten Rubber Grid Collimator for Electron Grid Therapy. Anticancer Res, 39;(6):2799-2804. doi: 10.21873/anticanres.13407


26. Sheikh K, Hrinivich WT, Bell LA, Moore JA, Laub W, Viswanathan AN, Yan Y, McNutt TR, Meyer J. (2019 Jun). Comparison of treatment planning approaches for spatially fractionated irradiation of deep tumors. J Appl Clin Med Phys, 20;(6):125-133. doi: 10.1002/acm2.12617


27. Gao M, Mohiuddin MM, Hartsell WF, Pankuch M. (2018 Apr). Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation. Med Phys, 45;(4):1645-1653. doi: 10.1002/mp.12807


28. Gholami S, Nedaie HA, Longo F, Ay MR, Dini SA, Meigooni AS. (2017 Oct-Dec). Grid Block Design Based on Monte Carlo Simulated Dosimetry, the Linear Quadratic and Hug-Kellerer Radiobiological Models. J Med Phys, 42;(4):213-221. doi: 10.4103/jmp.JMP_38_17


29. Henry T, Bassler N, Ureba A, Tsubouchi T, Valdman A, Siegbahn A. (2017 Nov). Development of an interlaced-crossfiring geometry for proton grid therapy. Acta Oncol, 56;(11):1437-1443. doi: 10.1080/0284186X.2017.1350287


30. Martínez-Rovira I, Puxeu-Vaqué J, Prezado Y. (2017 Oct). Dose evaluation of Grid Therapy using a 6 MV flattening filter-free (FFF) photon beam: A Monte Carlo study. Med Phys, 44;(10):5378-5383. doi: 10.1002/mp.12485


31. Henry T, Ureba A, Valdman A, Siegbahn A. (2017 Dec). Proton Grid Therapy: A Proof-of-Concept Study. Technol Cancer Res Treat, 16;(6):749-757. doi: 10.1177/1533034616681670


32. Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR. (2017 Aug). Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol, 56;(8):1048-1059. doi: 10.1080/0284186X.2017.1299939


33. Narayanasamy G, Zhang X, Meigooni A, Paudel N, Morrill S, Maraboyina S, Peacock L, Penagaricano J. (2017 Aug). Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors. Acta Oncol, 56;(8):1043-1047. doi: 10.1080/0284186X.2017.1299219


34. Tamura M, Monzen H, Kubo K, Hirata M, Nishimura Y. (2017 Feb 7). Feasibility of tungsten functional paper in electron grid therapy: a Monte Carlo study. Phys Med Biol, 62;(3):878-889. doi: 10.1088/1361-6560/62/3/878


35. Gholami S, Nedaie HA, Longo F, Ay MR, Wright S, Meigooni AS. (2016 Mar 8). Is grid therapy useful for all tumors and every grid block design? J Appl Clin Med Phys, 17;(2):206-219. doi: 10.1120/jacmp.v17i2.6015


36. Zhang X, Penagaricano J, Yan Y, Liang X, Morrill S, Griffin RJ, Corry P, Ratanatharathorn V. (2016 Jan 8). Spatially fractionated radiotherapy (GRID) using helical tomotherapy. J Appl Clin Med Phys, 17;(1):396-407. doi: 10.1120/jacmp.v17i1.5934


37. Zhu X, Driewer J, Li S, Verma V, Lei Y, Zhang M, Zhang Q, Zheng D, Cullip T, Chang SX, Wang AZ, Zhou S, Enke CA. (2015 Nov). Technical Note: Fabricating Cerrobend grids with 3D printing for spatially modulated radiation therapy: A feasibility study. Med Phys, 42;(11):6269-73. doi: 10.1118/1.4932223


38. Martínez-Rovira I, Fois G, Prezado Y. (2015 Feb). Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys, 42;(2):685-93. doi: 10.1118/1.4905042


39. Nobah A, Mohiuddin M, Devic S, Moftah B. (2015 Jan). Effective spatially fractionated GRID radiation treatment planning for a passive grid block. Br J Radiol, 88;(1045):20140363. doi: 10.1259/bjr.20140363


40. Fujimoto T, Monzen H, Nakata M, Okada T, Yano S, Takakura T, Kuwahara J, Sasaki M, Higashimura K, Hiraoka M. (2014 Nov). Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9MeV electron beams. Phys Med, 30;(7):838-42. doi: 10.1016/j.ejmp.2014.05.009


41. Costlow HN, Zhang H, Das IJ. (2014 Autumn). A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer. Med Dosim, 39;(3):218-26. doi: 10.1016/j.meddos.2014.02.004


42. Zhang H, Zhong H, Barth RF, Cao M, Das IJ. (2014 Feb). Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Med Phys, 41;(2):021727. doi: 10.1118/1.4862837


43. Wang X, Charlton MA, Esquivel C, Eng TY, Li Y, Papanikolaou N. (2013 Sep). Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy. Med Phys, 40;(9):093901. doi: 10.1118/1.4816653


44. Zhang X, Penagaricano J, Yan Y, Sharma S, Griffin RJ, Hardee M, Han EY, Ratanatharathom V. (2016 Feb). Application of Spatially Fractionated Radiation (GRID) to Helical Tomotherapy using a Novel TOMOGRID Template. Technol Cancer Res Treat, 15;(1):91-100. doi: 10.7785/tcrtexpress.2013.600261


45. Almendral P, Mancha PJ, Roberto D. (2013 May). Feasibility of a simple method of hybrid collimation for megavoltage grid therapy. Med Phys, 40;(5):051712. doi: 10.1118/1.4801902


46. Buckey C, Stathakis S, Cashon K, Gutierrez A, Esquivel C, Shi C, Papanikolaou N. (2010 Apr 26). Evaluation of a commercially-available block for spatially fractionated radiation therapy. J Appl Clin Med Phys, 11;(3):3163.


47. Stathakis S, Esquivel C, Gutiérrez AN, Shi C, Papanikolaou N. (2009 Oct). Dosimetric evaluation of multi-pattern spatially fractionated radiation therapy using a multi-leaf collimator and collapsed cone convolution superposition dose calculation algorithm. Appl Radiat Isot, 67;(10):1939-44. doi: 10.1016/j.apradiso.2009.06.012


48. Naqvi SA, Mohiuddin MM, Ha JK, Regine WF. (2008 Oct). Effects of tumor motion in GRID therapy. Med Phys, 35;(10):4435-42.


49. Zhang H, Wang JZ, Mayr N, Kong X, Yuan J, Gupta N, Lo S, Grecula J, Montebello J, Martin D, Yuh W. (2008 Jan 1). Fractionated grid therapy in treating cervical cancers: conventional fractionation or hypofractionation? Int J Radiat Oncol Biol Phys, 70;(1):280-8.


50. Meigooni AS, Gnaster M, Dou K, Johnson EL, Meigooni NJ, Kudrimoti M. (2007 Feb). Dosimetric evaluation of parallel opposed spatially fractionated radiation therapy of deep-seated bulky tumors. Med Phys, 34;(2):599-603.


51. Zhang H, Johnson EL, Zwicker RD. (2006 Dec 1). Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy. Int J Radiat Oncol Biol Phys, 66;(5):1576-83.


52. Meigooni AS, Dou K, Meigooni NJ, Gnaster M, Awan S, Dini S, Johnson EL. (2006 Sep). Dosimetric characteristics of a newly designed grid block for megavoltage photon radiation and its therapeutic advantage using a linear quadratic model. Med Phys, 33;(9):3165-73.


53. Ha JK, Zhang G, Naqvi SA, Regine WF, Yu CX. (2006 Jan). Feasibility of delivering grid therapy using a multileaf collimator. Med Phys, 33;(1):76-82.


54. Trapp JV, Warrington AP, Partridge M, Philps A, Glees J, Tait D, Ahmed R, Leach MO, Webb S. (2004 Oct 7). Measurement of the three-dimensional distribution of radiation dose in grid therapy. Phys Med Biol, 49;(19):N317-23.


55. Zwicker RD, Meigooni A, Mohiuddin M. (2004 Mar 15). Therapeutic advantage of grid irradiation for large single fractions. Int J Radiat Oncol Biol Phys, 58;(4):1309-15.


56. MARKS H. (1952 Mar). Clinical experience with irradiation through a grid. Radiology, 58;(3):338-42.


57. Meigooni AS, Parker SA, Zheng J, Kalbaugh KJ, Regine WF, Mohiuddin M. (2002 Spring). Dosimetric characteristics with spatial fractionation using electron grid therapy. Med Dosim, 27;(1):37-42.


58. Lin KH, Huang CY, Lin JP, Chu TC. (2002 Mar). Surface dose with grids in electron beam radiation therapy. Appl Radiat Isot, 56;(3):477-84.


59. Reiff JE, Huq MS, Mohiuddin M, Suntharalingam N. (1995 Nov 1). Dosimetric properties of megavoltage grid therapy. Int J Radiat Oncol Biol Phys, 33;(4):937-42.


reviews

1. Li W, Piao M, Zhai L, Zhu Y, Lou F, Chen L, Wang H. (2025 Jul 1). Effectiveness and Safety of Lattice Radiotherapy in Treating Large Volume Tumors: A Systematic Review and Meta-analysis Based on Single-arm Clinical Studies. Balkan Med J, 42;(4):311-320. doi: 10.4274/balkanmedj.galenos.2025.2025-2-129


2. Webster M, Podgorsak A, Li F, Zhou Y, Jung H, Yoon J, Dona Lemus O, Zheng D. (2025 Jun 13). New Approaches in Radiotherapy. Cancers (Basel), 17;(12):. doi: 10.3390/cancers17121980


3. Zhao H. (2025 May 6). Progress of the application of spatially fractionated radiation therapy in palliative treatment of tumors. Discov Oncol, 16;(1):678. doi: 10.1007/s12672-025-02487-2


4. Zheng D, Preuss K, Milano MT, He X, Gou L, Shi Y, Marples B, Wan R, Yu H, Du H, Zhang C. (2025 Apr 4). Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review. Radiat Oncol, 20;(1):49. doi: 10.1186/s13014-025-02626-7


5. Fernandez-Rodriguez A, Prezado Y. (2025 Apr 14). Towards improved prescription metrics in novel radiotherapy techniques: a machine learning study. Phys Med Biol, 70;(8):. doi: 10.1088/1361-6560/adc96c


6. Portik D, Lacombe D, Faivre-Finn C, Achard V, Andratschke N, Correia D, Spalek M, Guckenberger M, Ost P, Ehret F. (2025 May 2). The 2024 State of Science report from the European Organisation for Research and Treatment of Cancer's Radiation Oncology Scientific Council. Eur J Cancer, 220;():115334. doi: 10.1016/j.ejca.2025.115334


7. Snider JW, Mayr NA, Molitoris J, Chhabra AM, Mossahebi S, Griffin R, Mohiuddin M, Zhang H, Amendola B, Tubin S, Kang M, Limoli C, Marter K, Perez N, Rustin GO, Mahadevan A, Coleman CN, Ahmed M, Simone CB 2nd. (2025 May-Jun). The Radiosurgery Society Working Groups on GRID, LATTICE, Microbeam, and FLASH Radiotherapies: Advancements Symposium and Subsequent Progress Made. Pract Radiat Oncol, 15;(3):300-307. doi: 10.1016/j.prro.2024.09.015


8. Mayr NA, Mohiuddin M, Snider JW, Zhang H, Griffin RJ, Amendola BE, Hippe DS, Perez NC, Wu X, Lo SS, Regine WF, Simone CB 2nd. (2024 Feb). Practice Patterns of Spatially Fractionated Radiation Therapy: A Clinical Practice Survey. Adv Radiat Oncol, 9;(2):101308. doi: 10.1016/j.adro.2023.101308


9. Song CW, Terezakis S, Park WY, Paek SH, Kim MS, Cho LC, Griffin RJ. (2023 Nov 1). Preferential Tumor Vascular Damage Is the Common Antitumor Mechanism of High-Dose Hypofractionated Radiation Therapy: SABR, Spatially Fractionated Radiation Therapy, and FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys, 117;(3):701-704. doi: 10.1016/j.ijrobp.2023.05.015


10. Fernandez-Palomo C, Chang S, Prezado Y. (2022 Jul 26). Should Peak Dose Be Used to Prescribe Spatially Fractionated Radiation Therapy?-A Review of Preclinical Studies. Cancers (Basel), 14;(15):. doi: 10.3390/cancers14153625


11. Griffin RJ, Prise KM, McMahon SJ, Zhang X, Penagaricano J, Butterworth KT. (2020 Sep 1). History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. Br J Radiol, 93;(1113):20200217. doi: 10.1259/bjr.20200217


12. Griffin RJ, Ahmed MM, Amendola B, Belyakov O, Bentzen SM, Butterworth KT, Chang S, Coleman CN, Djonov V, Formenti SC, Glatstein E, Guha C, Kalnicki S, Le QT, Loo BW Jr, Mahadevan A, Massaccesi M, Maxim PG, Mohiuddin M, Mohiuddin M, Mayr NA, Obcemea C, Petersson K, Regine W, Roach M, Romanelli P, Simone CB 2nd, Snider JW, Spitz DR, Vikram B, Vozenin MC, Abdel-Wahab M, Welsh J, Wu X, Limoli CL. (2020 Jul 15). Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys, 107;(4):766-778. doi: 10.1016/j.ijrobp.2020.03.028


13. Billena C, Khan AJ. (2019 May 1). A Current Review of Spatial Fractionation: Back to the Future? Int J Radiat Oncol Biol Phys, 104;(1):177-187. doi: 10.1016/j.ijrobp.2019.01.073


Stereotactic Central/Core Ablative Radiation Therapy (SCART)

1. Li T, Yao X, He R, Xue X, Wang S, Chen J, Qiu Q, Yin Y, Tang Q. (2025). Proton stereotactic centralized ablative radiation therapy for treating bulky tumor: a treatment plan study. Front Oncol, 15;():1474327. doi: 10.3389/fonc.2025.1474327


2. Yang J, Lu Q, Qi W, Kolb RD, Wang L, Li Y, Li S, Lin Y, Liu J, Mourad W, MirkhaghaniHaghighi F, Slavisa T, Wu X, You WC, Yang E, Hanlon A, Zhu A, Yan W. (2024). Stereotactic central/core ablative radiation therapy: results of a phase I study of a novel strategy to treat bulky tumor. Front Oncol, 14;():1364627. doi: 10.3389/fonc.2024.1364627


3. Yu KK, Yeo A, Ngan S, Chu J, Chang D, Siva S, Wong A, Kron T, Hardcastle N, Gaudreault M, Chesson T, Williams S, Burns M, Chander S. (2024 May). Partially Ablative Body Radiotherapy (PABR): A novel approach for palliative radiotherapy of locally advanced bulky unresectable sarcomas. Radiother Oncol, 194;():110185. doi: 10.1016/j.radonc.2024.110185


SFRT

1. Tong X, Zhang W, Zhu YN, Hong X, Wang C, Setianegara J, Lin Y, Gao H. (2025 May 20). A fully flexible joint lattice position and dose optimization method for LATTICE therapy. ArXiv, ;():.


2. Misa J, St Clair W, Pokhrel D. (2025 Jul). Demonstration of an enhanced dosing pattern for debulking large and bulky unresectable tumors via differential hole-size spatially fractionated radiotherapy. J Appl Clin Med Phys, 26;(7):e70127. doi: 10.1002/acm2.70127


3. Misa J, Knight J 2nd, Clair WS, Pokhrel D. (2025 Autumn). Plan evaluation tool for spatially fractionated radiation therapy for unresectable large tumors via spatial biological effective dose modeling in combination therapy. Med Dosim, 50;(3):237-243. doi: 10.1016/j.meddos.2025.02.002


4. Majercakova K, Aguilar NT, Isern Verdum J, Bargalló HV, Capel AV, Mancera Soto M, Gómez de Segura Melcón G, Cordero JVR, González-López JA, Rosell SB, Jover DH, Mitre SR, Ibañez AP, Sebio A, Sancho-Pardo G. (2025 Feb 13). Role of Spatially Fractionated Radiotherapy (LATTICE) Treatment in Inoperable Bulky Soft-Tissue Sarcomas. Cancers (Basel), 17;(4):. doi: 10.3390/cancers17040624


5. Bergeron P, Milliat F, Deutsch E, Mondini M. (2024 Dec 31). Heterogeneous intratumor irradiation: a new partner for immunotherapy. Oncoimmunology, 13;(1):2434280. doi: 10.1080/2162402X.2024.2434280


6. Fischer J, Hart A, Bedriová N, Krim DE, Clements N, Bateman J, Korysko P, Farabolini W, Rieker V, Corsini R, Dosanjh M, Bazalova-Carter M. (2024 Dec 24). Spatially fractionated radiotherapy with very high energy electron pencil beam scanning. Phys Med Biol, 70;(1):. doi: 10.1088/1361-6560/ad9232


7. Zhu YN, Zhang W, Setianegara J, Lin Y, Traneus E, Long Y, Zhang X, Badkul R, Akhavan D, Wang F, Chen RC, Gao H. (2024 Oct 25). Proton ARC based LATTICE radiation therapy: feasibility study, energy layer optimization and LET optimization. Phys Med Biol, 69;(21):. doi: 10.1088/1361-6560/ad8855


8. McGarrigle JM, Long KR, Prezado Y. (2024). On the significance of the different geometrical and dosimetric parameters in microbeam and minibeam radiation therapy a retrospective evaluation. Front Oncol, 14;():1449293. doi: 10.3389/fonc.2024.1449293


9. Botti A, Finocchiaro D, Panico N, Trojani V, Paolani G, Iori F, Sghedoni R, Cagni E, Lambertini D, Ciammella P, Iotti C, Iori M. (2024 Oct). LatticeOpt: An automatic tool for planning optimisation of spatially fractionated stereotactic body radiotherapy. Phys Med, 126;():104823. doi: 10.1016/j.ejmp.2024.104823


10. Xu P, Wang S, Zhou J, Yuan K, Wang X, Li L, Lang J, Lu S. (2024 Sep). Spatially fractionated radiotherapy (Lattice SFRT) in the palliative treatment of locally advanced bulky unresectable head and neck cancer. Clin Transl Radiat Oncol, 48;():100830. doi: 10.1016/j.ctro.2024.100830


11. Misa J, Volk A, Bernard ME, Clair WS, Pokhrel D. (2024 Sep). Dosimetric impact of intrafraction patient motion on MLC-based 3D-conformal spatially fractionated radiation therapy treatment of large and bulky tumors. J Appl Clin Med Phys, 25;(9):e14469. doi: 10.1002/acm2.14469


12. Tubin S. (2024 Jul). A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol, 34;(3):323-336. doi: 10.1016/j.semradonc.2024.04.005


13. Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. (2024 Jul). Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol, 34;(3):310-322. doi: 10.1016/j.semradonc.2024.05.002


14. Zhang H, Wu X. (2024 Jul). Which Modality of SFRT Should be Considered First for Bulky Tumor Radiation Therapy, GRID or LATTICE? Semin Radiat Oncol, 34;(3):302-309. doi: 10.1016/j.semradonc.2024.04.006


15. Sheikh K, Li H, Wright JL, Yanagihara TK, Halthore A. (2024 Jul). The Peaks and Valleys of Photon Versus Proton Spatially Fractionated Radiotherapy. Semin Radiat Oncol, 34;(3):292-301. doi: 10.1016/j.semradonc.2024.04.007


16. Jenkins SV, Johnsrud AJ, Dings RPM, Griffin RJ. (2024 Jul). Bystander Effects in Spatially Fractionated Radiation Therapy: From Molecule To Organism To Clinical Implications. Semin Radiat Oncol, 34;(3):284-291. doi: 10.1016/j.semradonc.2024.05.004


17. McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. (2024 Jul). Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol, 34;(3):276-283. doi: 10.1016/j.semradonc.2024.04.002


18. Takashima ME, Berg TJ, Morris ZS. (2024 Jul). The Effects of Radiation Dose Heterogeneity on the Tumor Microenvironment and Anti-Tumor Immunity. Semin Radiat Oncol, 34;(3):262-271. doi: 10.1016/j.semradonc.2024.04.004


19. Griffin RJ, Guha C. (2024 Jul). Innovations in Physics, Biology and Clinical Translation of Spatially Fractionated and FLASH Radiotherapy. Semin Radiat Oncol, 34;(3):259-261. doi: 10.1016/j.semradonc.2024.05.005


20. Goddu SM, Hao Y, Ji Z, Setianegara J, Liu F, Green W, Sobotka LG, Zhao T, Perkins S, Darafsheh A. (2024 Jul). High spatiotemporal resolution scintillation imaging of pulsed pencil beam scanning proton beams produced by a gantry-mounted synchrocyclotron. Med Phys, 51;(7):4996-5006. doi: 10.1002/mp.17116


21. Castorina P, Castiglione F, Ferini G, Forte S, Martorana E. (2024 Apr 21). Computational Approach for Spatially Fractionated Radiation Therapy (SFRT) and Immunological Response in Precision Radiation Therapy. J Pers Med, 14;(4):. doi: 10.3390/jpm14040436


22. Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. (2024 May 10). Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol, 69;(10):. doi: 10.1088/1361-6560/ad4192


23. Tucker WW, Mazur TR, Schmidt MC, Hilliard J, Badiyan S, Spraker MB, Kavanaugh JA. (2024 Jan). Script-based implementation of automatic grid placement for lattice stereotactic body radiation therapy. Phys Imaging Radiat Oncol, 29;():100549. doi: 10.1016/j.phro.2024.100549


24. At B, Velayudham R. (2024 Autumn). Assessing dosimetric advancements in spatially fractionated radiotherapy: From grids to lattices. Med Dosim, 49;(3):206-214. doi: 10.1016/j.meddos.2023.12.003


25. Modic Z, Markelc B, Jesenko T. (2024). Partial-Volume Irradiation of Murine Tumors. Methods Mol Biol, 2773;():97-104. doi: 10.1007/978-1-0716-3714-2_10


26. Li H, Mayr NA, Griffin RJ, Zhang H, Pokhrel D, Grams M, Penagaricano J, Chang S, Spraker MB, Kavanaugh J, Lin L, Sheikh K, Mossahebi S, Simone CB, Roberge D, Snider JW, Sabouri P, Molineu A, Xiao Y, Benedict SH. (2024 Jul 1). Overview and Recommendations for Prospective Multi-institutional Spatially Fractionated Radiation Therapy Clinical Trials. Int J Radiat Oncol Biol Phys, 119;(3):737-749. doi: 10.1016/j.ijrobp.2023.12.013


27. Ginn J, Duriseti S, Mazur T, Spraker M, Kavanaugh J. (2024 Jul-Aug). A Dose Accumulation Assessment of Alignment Errors During Spatially Fractionated Radiation Therapy. Pract Radiat Oncol, 14;(4):e283-e290. doi: 10.1016/j.prro.2023.11.015


28. Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. (2024 Jan). Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol, 44;():100691. doi: 10.1016/j.ctro.2023.100691


29. Zhang H, Ma L, Lim A, Ye J, Lukas L, Li H, Mayr NA, Chang EL. (2024 Feb 1). Dosimetric Validation for Prospective Clinical Trial of GRID Collimator-Based Spatially Fractionated Radiation Therapy: Dose Metrics Consistency and Heterogeneous Pattern Reproducibility. Int J Radiat Oncol Biol Phys, 118;(2):565-573. doi: 10.1016/j.ijrobp.2023.08.061


30. Clements N, Esplen N, Bazalova-Carter M. (2023 Aug). A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med, 112;():102637. doi: 10.1016/j.ejmp.2023.102637


31. Pedroso Partichelli F, de Arruda Botelho M. (2023 Winter). Evaluation of the applicability of the lattice radiotherapy technique at the National Cancer Institute - INCA. Med Dosim, 48;(4):245-248. doi: 10.1016/j.meddos.2023.05.003


32. Grams MP, Deufel CL, Kavanaugh JA, Corbin KS, Ahmed SK, Haddock MG, Lester SC, Ma DJ, Petersen IA, Finley RR, Lang KG, Spreiter SS, Park SS, Owen D. (2023 Jul). Clinical aspects of spatially fractionated radiation therapy treatments. Phys Med, 111;():102616. doi: 10.1016/j.ejmp.2023.102616


33. Bertho A, Iturri L, Prezado Y. (2023). Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. Int Rev Cell Mol Biol, 376;():37-68. doi: 10.1016/bs.ircmb.2022.11.005


34. Tubin S, Vozenin MC, Prezado Y, Durante M, Prise KM, Lara PC, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin MM, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. (2023 May). Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol, 40;():100605. doi: 10.1016/j.ctro.2023.100605


35. Chang S. (2023 Jun). A journey to understand SFRT. Med Phys, 50 Suppl 1;():40-44. doi: 10.1002/mp.16314


36. Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. (2023). Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res, 15;():113-122. doi: 10.2147/CMAR.S393934


37. Mahmoudi F, Mohammadi N, Haghighi M, Alirezaei Z, Jabbari I, Chegeni N, Elmtalab S, Vega-Carrillo HR, Kazemian A, Geraily G, Karimi AH. (2023). How much should you worry about contaminant neutrons in spatially fractionated grid radiation therapy? PLoS One, 18;(1):e0280433. doi: 10.1371/journal.pone.0280433


38. Fernandez-Palomo C, Chang S, Prezado Y. (2022 Jul 26). Should Peak Dose Be Used to Prescribe Spatially Fractionated Radiation Therapy?-A Review of Preclinical Studies. Cancers (Basel), 14;(15):. doi: 10.3390/cancers14153625


39. Pokhrel D, Bernard ME, Mallory R, St Clair W, Kudrimoti M. (2022 May). Conebeam CT-guided 3D MLC-based spatially fractionated radiation therapy for bulky masses. J Appl Clin Med Phys, 23;(5):e13608. doi: 10.1002/acm2.13608


40. Butterworth KT, Ghita M, McMahon SJ, Mcgarry CK, Griffin RJ, Hounsell AR, Prise KM. (2017 Jan). Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy. Br J Radiol, 90;(1069):20160485. doi: 10.1259/bjr.20160485


microbeam

1. Bustillo JPO, Engels EEM, de Rover V, Roughley K, Posadas JRD, Inocencio ET, Warren D, Wallace GG, Tehei M, Rosenfeld AB, Lerch MLF. (2025 Apr 22). Three-dimensional bioprinted in vitro glioma tumor constructs for synchrotron microbeam radiotherapy dosimetry and biological study using gelatin methacryloyl hydrogel. Sci Rep, 15;(1):13868. doi: 10.1038/s41598-025-88793-9


2. Stolz J, Rogal K, Bicher S, Winter J, Ahmed M, Raulefs S, Combs SE, Bartzsch SH, Schmid TE. (2025 Mar 10). The Combination of Temporal and Spatial Dose Fractionation in Microbeam Radiation Therapy. Biomedicines, 13;(3):. doi: 10.3390/biomedicines13030678


3. Zhang W, Hong X, Wu W, Wang C, Johnson D, Gan GN, Lin Y, Gao H. (2025 Feb). Multi-collimator proton minibeam radiotherapy with joint dose and PVDR optimization. Med Phys, 52;(2):1182-1192. doi: 10.1002/mp.17548


4. Trappetti V, Fernández-Palomo C, Arora P, Potez M, Pellicioli P, Fazzari J, Shintani N, Sanchez-Gonzalez I, Wu CT, de Breuyn Dietler B, Mercader-Huber N, Martin OA, von Gunten S, Volarevic V, Djonov V. (2025 Jan 1). Towards melanoma in situ vaccination with multiple ultra-narrow X-ray beams. Cancer Lett, 608;():217326. doi: 10.1016/j.canlet.2024.217326


5. Ortiz R, Ramos-Méndez J. (2024 Nov 4). Tumor growth and vascular redistribution contributes to the dosimetric preferential effect of microbeam radiotherapy: a Monte Carlo study. Sci Rep, 14;(1):26585. doi: 10.1038/s41598-024-77415-5


6. McGarrigle JM, Long KR, Prezado Y. (2024). On the significance of the different geometrical and dosimetric parameters in microbeam and minibeam radiation therapy a retrospective evaluation. Front Oncol, 14;():1449293. doi: 10.3389/fonc.2024.1449293


7. Lin Y, Li W, Wang A, Johnson D, Gan GN, Gao H. (2024). Comprehensive dosimetric commissioning of proton minibeam radiotherapy on a single gantry proton system. Front Oncol, 14;():1421869. doi: 10.3389/fonc.2024.1421869


8. Grams MP, Mateus CQ, Mashayekhi M, Mutter RW, Djonov V, Fazzari JM, Xiao H, Frechette KM, Wentworth AJ, Morris JM, Klebel B, Thull JC, Guenzel RM, Wismayer DJS, Lucien F, Park SS, Lester SC. (2024 Dec 1). Minibeam Radiation Therapy Treatment (MBRT): Commissioning and First Clinical Implementation. Int J Radiat Oncol Biol Phys, 120;(5):1423-1434. doi: 10.1016/j.ijrobp.2024.06.035


9. Kundapur V, Torlakovic E, Auer RN. (2024 Jul). The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin Radiat Oncol, 34;(3):337-343. doi: 10.1016/j.semradonc.2024.04.003


10. Carver A, Baker S, Dumbill A, Horton S, Green S. (2024 Jun 19). Design and characterisation of a minibeam collimator utilising Monte Carlo simulation and a clinical linear accelerator. Phys Med Biol, 69;(13):. doi: 10.1088/1361-6560/ad4d52


11. Lin Y, Li W, Johnson D, Prezado Y, Gan GN, Gao H. (2024 Jun). Development and characterization of the first proton minibeam system for single-gantry proton facility. Med Phys, 51;(6):3995-4006. doi: 10.1002/mp.17074


12. Stengl C, Muñoz ID, Arbes E, Rauth E, Christensen JB, Vedelago J, Runz A, Jäkel O, Seco J. (2024 Aug). Dosimetric study for breathing-induced motion effects in an abdominal pancreas phantom for carbon ion mini-beam radiotherapy. Med Phys, 51;(8):5618-5631. doi: 10.1002/mp.17077


13. Bertho A, Ortiz R, Maurin M, Juchaux M, Gilbert C, Espenon J, Ramasamy G, Patriarca A, De Marzi L, Pouzoulet F, Prezado Y. (2024 Oct 1). Thoracic Proton Minibeam Radiation Therapy: Tissue Preservation and Survival Advantage Over Conventional Proton Therapy. Int J Radiat Oncol Biol Phys, 120;(2):579-592. doi: 10.1016/j.ijrobp.2024.04.011


14. Reaz F, Traneus E, Bassler N. (2024 Apr 11). Tuning spatially fractionated radiotherapy dose profiles using the moiré effect. Sci Rep, 14;(1):8468. doi: 10.1038/s41598-024-55104-7


15. Ahmed M, Bicher S, Combs SE, Lindner R, Raulefs S, Schmid TE, Spasova S, Stolz J, Wilkens JJ, Winter J, Bartzsch S. (2024 Jan 30). In Vivo Microbeam Radiation Therapy at a Conventional Small Animal Irradiator. Cancers (Basel), 16;(3):. doi: 10.3390/cancers16030581


16. di Franco F, Rosuel N, Gallin-Martel L, Gallin-Martel ML, Ghafooryan-Sangchooli M, Keshmiri S, Motte JF, Muraz JF, Pellicioli P, Ruat M, Serduc R, Verry C, Dauvergne D, Adam JF. (2023 Nov 1). Monocrystalline diamond detector for online monitoring during synchrotron microbeam radiotherapy. J Synchrotron Radiat, 30;(Pt 6):1076-1085. doi: 10.1107/S160057752300752X


17. Chtcheprov P, Hadsell M, Burk L, Ger R, Zhang L, Yuan H, Lee YZ, Chang S, Lu J, Zhou O. (2013 Feb 9). Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array. Proc SPIE Int Soc Opt Eng, 8671;():. pii: 86711Z


18. Sharma S, Narayanasamy G, Przybyla B, Webber J, Boerma M, Clarkson R, Moros EG, Corry PM, Griffin RJ. (2017 Feb). Advanced Small Animal Conformal Radiation Therapy Device. Technol Cancer Res Treat, 16;(1):45-56. doi: 10.1177/1533034615626011


19. Yuan H, Zhang L, Frank JE, Inscoe CR, Burk LM, Hadsell M, Lee YZ, Lu J, Chang S, Zhou O. (2015 Sep). Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study. Radiat Res, 184;(3):322-33. doi: 10.1667/RR13919.1


20. Belley MD, Stanton IN, Hadsell M, Ger R, Langloss BW, Lu J, Zhou O, Chang SX, Therien MJ, Yoshizumi TT. (2015 Apr). Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam. Med Phys, 42;(4):1966-72. doi: 10.1118/1.4915078


21. Fontanella AN, Boss MK, Hadsell M, Zhang J, Schroeder T, Berman KG, Dewhirst MW, Chang S, Palmer GM. (2015 Feb). Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis. Radiat Res, 183;(2):147-58. doi: 10.1667/RR13712.1


22. Zhang L, Yuan H, Inscoe C, Chtcheprov P, Hadsell M, Lee Y, Lu J, Chang S, Zhou O. (2014 Dec). Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment. Expert Rev Anticancer Ther, 14;(12):1411-8. doi: 10.1586/14737140.2014.978293


23. Chtcheprov P, Burk L, Yuan H, Inscoe C, Ger R, Hadsell M, Lu J, Zhang L, Chang S, Zhou O. (2014 Aug). Physiologically gated microbeam radiation using a field emission x-ray source array. Med Phys, 41;(8):081705. doi: 10.1118/1.4886015


24. Hadsell M, Cao G, Zhang J, Burk L, Schreiber T, Schreiber E, Chang S, Lu J, Zhou O. (2014 Jun). Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med Phys, 41;(6):061710. doi: 10.1118/1.4873683


25. Zhang L, Yuan H, Burk LM, Inscoe CR, Hadsell MJ, Chtcheprov P, Lee YZ, Lu J, Chang S, Zhou O. (2014 Mar 7). Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array. Phys Med Biol, 59;(5):1283-303. doi: 10.1088/0031-9155/59/5/1283


26. Hadsell M, Zhang J, Laganis P, Sprenger F, Shan J, Zhang L, Burk L, Yuan H, Chang S, Lu J, Zhou O. (2013 Oct 28). A first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology. Appl Phys Lett, 103;(18):183505.


27. Schreiber EC, Chang SX. (2012 Aug). Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology. Med Phys, 39;(8):4669-78. doi: 10.1118/1.4728220


28. Griffin RJ, Koonce NA, Dings RP, Siegel E, Moros EG, Bräuer-Krisch E, Corry PM. (2012 Jun). Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiat Res, 177;(6):804-12.


minibeam

1. Potiron S, Iturri L, Lamirault C, Dos Santos M, Corvino A, Fernandez-Rodriguez A, De Marzi L, Espenon J, Gilbert C, Juchaux M, Larcher T, Créhange G, Griffin R, Prezado Y. (2025 Jun 27). Dose Heterogeneity Reduces Radiation Oxygen Dependence in Both Tumor and Healthy Tissues: The Case of Proton Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys, ;():. pii: S0360-3016(25)04494-3. doi: 10.1016/j.ijrobp.2025.06.3859


2. Herchko S, Yaddanapudi S, Wang CC. (2025 May 27). Design and validation of a minibeam treatment delivery system for use with a radiation therapy research platform. Biomed Phys Eng Express, 11;(4):. doi: 10.1088/2057-1976/adcf2c


3. Jouglar E, de Marzi L, Verrelle P, Créhange G, Ferrand R, Doz F, Prezado Y, Paoletti X. (2025 May). From pre-clinical studies to human treatment with proton-minibeam radiation therapy: adapted Idea, Development, Exploration, Assessment and Long-term evaluation (IDEAL) framework for innovation in radiotherapy. Clin Transl Radiat Oncol, 52;():100932. doi: 10.1016/j.ctro.2025.100932


4. Shinde N, Zhang W, Lin Y, Gao H. (2025 Feb 27). Minibeam-pLATTICE: A novel proton LATTICE modality using minibeams. ArXiv, ;():.


SFRT biology

1. Casteloes N, House CD, Tambasco M. (2025 May 7). A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival. Int J Mol Sci, 26;(9):. doi: 10.3390/ijms26094436


2. Kaminaga K, Fukunaga H, Hirose E, Watanabe R, Suzuki K, Prise KM, Yokoya A. (2025 May 23). Time-lapse imaging of cells in spatially fractionated X-ray fields using a mini beam as an alternative to accelerator-based sub-millimeter beams. J Radiat Res, 66;(3):318-328. doi: 10.1093/jrr/rraf020


3. Fazzari J, Fernandez-Palomo C, Pellicioli P, Day L, Trappetti V, Lucien-Matteoni F, Kim Y, Mutter R, Park S, Grams M, Djonov V. (2025 Mar 10). Spatially fractionated minibeam radiation delivered at clinically feasible dose rates induces transient vascular permeability. Sci Rep, 15;(1):8210. doi: 10.1038/s41598-025-87395-9


4. Bertho A, Graeff C, Ortiz R, Giorgi M, Schuy C, Juchaux M, Gilbert C, Espenon J, Oppermann J, Sokol O, Tinganelli W, Prezado Y. (2025 Mar 1). Carbon minibeam radiation therapy results in tumor growth delay in an osteosarcoma murine model. Sci Rep, 15;(1):7305. doi: 10.1038/s41598-025-91872-6


5. Prezado Y, Lamirault C, Larcher T, Gilbert C, Espenon J, Patriarca A, de Marzi L, Corvino A, Ortiz R, Juchaux M. (2025 Apr). On the significance of peak dose in normal tissue toxicity in spatially fractionated radiotherapy: The case of proton minibeam radiation therapy. Radiother Oncol, 205;():110769. doi: 10.1016/j.radonc.2025.110769


6. Khan AZ, Scholl CM, Henry JG, Basran PS. (2024 Nov 1). A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy. Radiat Res, 202;(5):745-751. doi: 10.1667/RADE-24-00168.1


7. Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. (2024 Sep 18). Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med, 16;(765):eadk0642. doi: 10.1126/scitranslmed.adk0642


8. Bekker RA, Obertopp N, Redler G, Penagaricano J, Caudell JJ, Yamoah K, Pilon-Thomas S, Moros EG, Enderling H. (2024 Sep 13). Spatially fractionated GRID radiation potentiates immune-mediated tumor control. Radiat Oncol, 19;(1):121. doi: 10.1186/s13014-024-02514-6


9. Lukas L, Zhang H, Cheng K, Epstein A. (2023 Dec). Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep, 25;(12):1483-1496. doi: 10.1007/s11912-023-01473-7


10. Chi MS, Tien DC, Chi KH. (2023). Inhomogeneously distributed ferroptosis with a high peak-to-valley ratio may improve the antitumor immune response. Front Oncol, 13;():1178681. doi: 10.3389/fonc.2023.1178681


11. Cho YB, Yoon N, Suh JH, Scott JG. (2023 Aug 7). Radio-immune response modelling for spatially fractionated radiotherapy. Phys Med Biol, 68;(16):. doi: 10.1088/1361-6560/ace819


12. Cho YB, Yoon N, Suh JH, Jacob SG. (2023 Apr 30). Radio-Immune Response Modelling for Spatially Fractionated Radiotherapy. bioRxiv, ;():. pii: 2023.04.28.538767. doi: 10.1101/2023.04.28.538767


13. Serduc R, Bouchet A. (2023 May 1). MRT-boost as the last fraction may be the most efficient irradiation schedule for increased survival times in a rat glioma model. J Synchrotron Radiat, 30;(Pt 3):591-595. doi: 10.1107/S1600577523002606


14. Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. (2023 Jan 26). Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel), 15;(3):. doi: 10.3390/cancers15030768


15. Arous D, Lie JL, Håland BV, Børsting M, Edin NFJ, Malinen E. (2023 Jan 13). 2D mapping of radiation dose and clonogenic survival for accurate assessment ofin vitroX-ray GRID irradiation effects. Phys Med Biol, 68;(2):. doi: 10.1088/1361-6560/acaf20


16. Rogers LJ, Harley JC, McKenzie DR, Suchowerska N. (2022). Radiation responses of cancer and normal cells to split dose fractions with uniform and grid fields: increasing the therapeutic ratio. Int J Radiat Biol, 98;(9):1424-1431. doi: 10.1080/09553002.2022.2047826


17. Price LSL, Rivera JN, Madden AJ, Herity LB, Piscitelli JA, Mageau S, Santos CM, Roques JR, Midkiff B, Feinberg NN, Darr D, Chang SX, Zamboni WC. (2021). Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model. Ther Adv Med Oncol, 13;():17588359211053700. doi: 10.1177/17588359211053700


18. Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. (2021 Nov 11). Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol, 66;(22):. doi: 10.1088/1361-6560/ac3119


19. Rivera JN, Kierski TM, Kasoji SK, Abrantes AS, Dayton PA, Chang SX. (2020). Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One, 15;(6):e0229053. doi: 10.1371/journal.pone.0229053


20. Nolan MW, Gieger TL, Karakashian AA, Nikolova-Karakashian MN, Posner LP, Roback DM, Rivera JN, Chang S. (2017 Jun). Outcomes of Spatially Fractionated Radiotherapy (GRID) for Bulky Soft Tissue Sarcomas in a Large Animal Model. Technol Cancer Res Treat, 16;(3):357-365. doi: 10.1177/1533034617690980


21. Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. (2015 Jan 1). High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett, 356;(1):52-7. doi: 10.1016/j.canlet.2013.10.032


22. Asur RS, Sharma S, Chang CW, Penagaricano J, Kommuru IM, Moros EG, Corry PM, Griffin RJ. (2012 Jun). Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiat Res, 177;(6):751-65.


23. Sathishkumar S, Boyanovsky B, Karakashian AA, Rozenova K, Giltiay NV, Kudrimoti M, Mohiuddin M, Ahmed MM, Nikolova-Karakashian M. (2005 Sep). Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther, 4;(9):979-86.


24. Sathishkumar S, Dey S, Meigooni AS, Regine WF, Kudrimoti MS, Ahmed MM, Mohiuddin M. (2002 Apr). The impact of TNF-alpha induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technol Cancer Res Treat, 1;(2):141-7.


25. How H, Vittoria C. (1989 Apr 1). Surface retarded modes in multilayered structures: Parallel magnetization. Phys Rev B Condens Matter, 39;(10):6823-6830.


26. Miller RC, Wilson KG, Feola JM, Urano M, Yaes RJ, McLaughlin P, Maruyama Y. (1992 Jul). Megavoltage grid total body irradiation of C3Hf/SED mice. Strahlenther Onkol, 168;(7):423-6.


clinical

1. Yilmaz MT, Yedekci FY, Mohammadipour S, Kivanc H, Cengiz M, Cifci G, Kertmen N, Yazici G. (2025 Jun). Advancing Intracranial Tumor Treatment Through Gyroscopic Radiosurgery-Based Lattice Therapy: Evidence From a Case Series Study. Cureus, 17;(6):e85383. doi: 10.7759/cureus.85383


2. Ferris MJ, Mossahebi S, Jatczak J, Molitoris JK, Rana ZH, Steacy KJ, Regine WF, Yi BY. (2025 Jul). Bulky non-small cell lung cancer treated with two-field robust proton lattice boost followed by conventional chemoradiation. Clin Transl Radiat Oncol, 53;():100987. doi: 10.1016/j.ctro.2025.100987


3. Knight JA 2nd, Trosper N, Misa J, Bernard ME, Fabian D, Kudrimoti M, Yan W, St Clair W, Yang ES, Pokhrel D. (2025 Jul 15). Reported Early Clinical Outcomes of Forward-Planned Multileaf Collimator-Based 3-Dimensional Conformal Spatially Fractionated Radiation Therapy Technique for Large and Bulky Tumors. Int J Radiat Oncol Biol Phys, 122;(4):1060-1068. doi: 10.1016/j.ijrobp.2025.04.016


4. Majercakova K, Aguilar NT, Isern Verdum J, Bargalló HV, Capel AV, Mancera Soto M, Gómez de Segura Melcón G, Cordero JVR, González-López JA, Rosell SB, Jover DH, Mitre SR, Ibañez AP, Sebio A, Sancho-Pardo G. (2025 Feb 13). Role of Spatially Fractionated Radiotherapy (LATTICE) Treatment in Inoperable Bulky Soft-Tissue Sarcomas. Cancers (Basel), 17;(4):. doi: 10.3390/cancers17040624


5. Studer G, Jeller D, Streller T, Huebner D, Glanzmann C. (2024 Sep). Time-Related Outcome Following Palliative Spatially Fractionated Stereotactic Radiation Therapy (Lattice) of Large Tumors - A Case Series. Adv Radiat Oncol, 9;(9):101566. doi: 10.1016/j.adro.2024.101566


6. Xu P, Wang S, Zhou J, Yuan K, Wang X, Li L, Lang J, Lu S. (2024 Sep). Spatially fractionated radiotherapy (Lattice SFRT) in the palliative treatment of locally advanced bulky unresectable head and neck cancer. Clin Transl Radiat Oncol, 48;():100830. doi: 10.1016/j.ctro.2024.100830


7. Pedroso Partichelli F, de Arruda Botelho M. (2023 Winter). Evaluation of the applicability of the lattice radiotherapy technique at the National Cancer Institute - INCA. Med Dosim, 48;(4):245-248. doi: 10.1016/j.meddos.2023.05.003


8. Torelli N, Papp D, Unkelbach J. (2023 Aug). Spatiotemporal fractionation schemes for stereotactic radiosurgery of multiple brain metastases. Med Phys, 50;(8):5095-5114. doi: 10.1002/mp.16457


9. Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. (2023). Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res, 15;():113-122. doi: 10.2147/CMAR.S393934


10. Price AT, Schiff JP, Zhu T, Mazur T, Kavanaugh JA, Maraghechi B, Green O, Kim H, Spraker MB, Henke LE. (2023 Mar). First treatments for Lattice stereotactic body radiation therapy using magnetic resonance image guided radiation therapy. Clin Transl Radiat Oncol, 39;():100577. doi: 10.1016/j.ctro.2023.100577


11. Iori F, Cappelli A, "DAngelo E", Cozzi S, Ghersi SF, De Felice F, Ciammella P, Bruni A, Iotti C. (2023 Mar). Lattice Radiation Therapy in clinical practice: A systematic review. Clin Transl Radiat Oncol, 39;():100569. doi: 10.1016/j.ctro.2022.100569


12. Ferini G, Parisi S, Lillo S, Viola A, Minutoli F, Critelli P, Valenti V, Illari SI, Brogna A, Umana GE, Ferrantelli G, Lo Giudice G, Carrubba C, Zagardo V, Santacaterina A, Leotta S, Cacciola A, Pontoriero A, Pergolizzi S. (2022 Aug 12). Impressive Results after "Metabolism-Guided" Lattice Irradiation in Patients Submitted to Palliative Radiation Therapy: Preliminary Results of LATTICE_01 Multicenter Study. Cancers (Basel), 14;(16):. doi: 10.3390/cancers14163909


13. Schiff JP, Spraker MB, Duriseti S, Shaikh S, Murad HF, Mutch DG, Robinson CG, Kavanaugh J, Lin AJ. (2022 Jan-Feb). Tumor Lysis Syndrome in a Patient With Metastatic Endometrial Cancer Treated With Lattice Stereotactic Body Radiation Therapy. Adv Radiat Oncol, 7;(1):100797. doi: 10.1016/j.adro.2021.100797


14. Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, Lin Q, Zhang C, Zheng F, Yan W, Zheng Y, Wu X, Xu B. (2020). Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report. Front Oncol, 10;():548132. doi: 10.3389/fonc.2020.548132


15. Snider JW, Molitoris J, Shyu S, Diwanji T, Rice S, Kowalski E, Decesaris C, Remick JS, Yi B, Zhang B, Hall A, Hanna N, Ng VY, Regine WF. (2020 Dec 1). Spatially Fractionated Radiotherapy (GRID) Prior to Standard Neoadjuvant Conventionally Fractionated Radiotherapy for Bulky, High-Risk Soft Tissue and Osteosarcomas: Feasibility, Safety, and Promising Pathologic Response Rates. Radiat Res, 194;(6):707-714. doi: 10.1667/RADE-20-00100.1


16. Amendola BE, Perez NC, Mayr NA, Wu X, Amendola M. (2020 Dec 1). Spatially Fractionated Radiation Therapy Using Lattice Radiation in Far-advanced Bulky Cervical Cancer: A Clinical and Molecular Imaging and Outcome Study. Radiat Res, 194;(6):724-736. doi: 10.1667/RADE-20-00038.1


17. Mohiuddin M, Lynch C, Gao M, Hartsell W. (2020 Mar). Early clinical results of proton spatially fractionated GRID radiation therapy (SFGRT). Br J Radiol, 93;(1107):20190572. doi: 10.1259/bjr.20190572


18. Neuner G, Mohiuddin MM, Vander Walde N, Goloubeva O, Ha J, Yu CX, Regine WF. (2012 Apr 1). High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT. Int J Radiat Oncol Biol Phys, 82;(5):1642-9. doi: 10.1016/j.ijrobp.2011.01.065


19. Peñagarícano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P. (2010 Apr). Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. Int J Radiat Oncol Biol Phys, 76;(5):1369-75. doi: 10.1016/j.ijrobp.2009.03.030


20. Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M. (2006 Dec). Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technol Cancer Res Treat, 5;(6):607-12.


21. Mohiuddin M, Fujita M, Regine WF, Megooni AS, Ibbott GS, Ahmed MM. (1999 Oct 1). High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys, 45;(3):721-7.


22. Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. (1990 Jul 1). Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation. A pilot study. Cancer, 66;(1):114-8.